新疆哈密石油中學(xué)2025年數(shù)學(xué)高二第一學(xué)期期末綜合測試試題含解析_第1頁
新疆哈密石油中學(xué)2025年數(shù)學(xué)高二第一學(xué)期期末綜合測試試題含解析_第2頁
新疆哈密石油中學(xué)2025年數(shù)學(xué)高二第一學(xué)期期末綜合測試試題含解析_第3頁
新疆哈密石油中學(xué)2025年數(shù)學(xué)高二第一學(xué)期期末綜合測試試題含解析_第4頁
新疆哈密石油中學(xué)2025年數(shù)學(xué)高二第一學(xué)期期末綜合測試試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

新疆哈密石油中學(xué)2025年數(shù)學(xué)高二第一學(xué)期期末綜合測試試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在直三棱柱中,,,則直線與所成角的大小為()A.30° B.60°C.120° D.150°2.已知一個圓錐的體積為,任取該圓錐的兩條母線a,b,若a,b所成角的最大值為,則該圓錐的側(cè)面積為()A. B.C. D.3.從1,2,3,4,5中任取2個不同的數(shù),兩數(shù)和為偶數(shù)的概率為()A. B.C. D.4.已知,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件5.阿基米德是古希臘著名的數(shù)學(xué)家、物理學(xué)家,他利用“逼近法”得到橢圓的面積除以圓周率等于橢圓的長半軸長與短半軸長的乘積,已知在平面直角坐標(biāo)系中,橢圓的面積為,兩焦點與短軸的一個端點構(gòu)成等邊三角形,則橢圓的標(biāo)準(zhǔn)方程是()A. B.C. D.6.若函數(shù)在上有且僅有一個極值點,則實數(shù)的取值范圍為()A. B.C. D.7.已知集合A=()A. B.C.或 D.8.拋物線的頂點在原點,對稱軸是x軸,點在拋物線上,則拋物線的方程為()A. B.C. D.9.?dāng)?shù)列是等比數(shù)列,是其前n項之積,若,則的值是()A.1024 B.256C.2 D.51210.古希臘數(shù)學(xué)家歐幾里得在《幾何原本》中描述了圓錐曲線共性,并給出了圓錐曲線的統(tǒng)一定義,只可惜對這一定義歐幾里得沒有給出證明.經(jīng)過了500年,到了3世紀(jì),希臘數(shù)學(xué)家帕普斯在他的著作《數(shù)學(xué)匯篇》中,完善了歐幾里得關(guān)于圓錐曲線的統(tǒng)一定義,并對這一定義進(jìn)行了證明.他指出,到定點的距離與到定直線的距離的比是常數(shù)的點的軌跡叫做圓錐曲線;當(dāng)時,軌跡為橢圓;當(dāng)時,軌跡為拋物線;當(dāng)時,軌跡為雙曲線.現(xiàn)有方程表示的曲線是雙曲線,則的取值范圍為()A. B.C. D.11.袋子中有四個小球,分別寫有“文、明、中、國”四個字,有放回地從中任取一個小球,直到“中”“國”兩個字都取到就停止,用隨機(jī)模擬的方法估計恰好在第三次停止的概率.利用電腦隨機(jī)產(chǎn)生0到3之間取整數(shù)值的隨機(jī)數(shù),分別用0,1,2,3代表“文、明、中、國”這四個字,以每三個隨機(jī)數(shù)為一組,表示取球三次的結(jié)果,經(jīng)隨機(jī)模擬產(chǎn)生了以下18組隨機(jī)數(shù):由此可以估計,恰好第三次就停止的概率為()A. B.C. D.12.某企業(yè)為節(jié)能減排,用萬元購進(jìn)一臺新設(shè)備用于生產(chǎn).第一年需運(yùn)營費(fèi)用萬元,從第二年起,每年運(yùn)營費(fèi)用均比上一年增加萬元,該設(shè)備每年生產(chǎn)的收入均為萬元.設(shè)該設(shè)備使用了年后,年平均盈利額達(dá)到最大值(盈利額等于收入減去成本),則等于()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.銀行一年定期的存款的利率為p,如果將a元存入銀行一年定期,到期后將本利再存一年定期,到期后再存一年定期……,則10年后到期本利共________元14.若“”是真命題,則實數(shù)的最小值為_____________.15.已知橢圓的弦AB的中點為M,O為坐標(biāo)原點,則直線AB的斜率與直線OM的斜率之積等于_________16.已知數(shù)列滿足:,,則______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖所示,圓錐的高,底面圓的半徑為,延長直徑到點,使得,分別過點、作底面圓的切線,兩切線相交于點,點是切線與圓的切點(1)證明:平面;(2)若平面與平面所成銳二面角的余弦值為,求該圓錐的體積18.(12分)已知點和圓.(1)求圓的圓心坐標(biāo)和半徑;(2)設(shè)為圓上的點,求的取值范圍.19.(12分)如圖,四棱錐中,,且,(1)求證:平面平面;(2)若是等邊三角形,底面是邊長為3的正方形,是中點,求直線與平面所成角的正弦值.20.(12分)在直角坐標(biāo)系中,點到兩點、的距離之和等于,設(shè)點的軌跡為,直線與交于、兩點(1)求曲線的方程;(2)若,求的值21.(12分)某城市地鐵公司為鼓勵人們綠色出行,決定按照乘客經(jīng)過地鐵站的數(shù)量實施分段優(yōu)惠政策,不超過12站的地鐵票價如下表:乘坐站數(shù)票價(元)246現(xiàn)有甲、乙兩位乘客同時從起點乘坐同一輛地鐵,已知他們乘坐地鐵都不超過12站,且他們各自在每個站下地鐵的可能性是相同的.(1)若甲、乙兩人共付費(fèi)6元,則甲、乙下地鐵的方案共有多少種?(2)若甲、乙兩人共付費(fèi)8元,則甲比乙先下地鐵的方案共有多少種?22.(10分)某中醫(yī)藥研究所研制出一種新型抗過敏藥物,服用后需要檢驗血液抗體是否為陽性,現(xiàn)有n(n∈N*)份血液樣本,每個樣本取到的可能性均等,有以下兩種檢驗方式:①逐份檢驗,需要檢驗n次;②混合檢驗,將其中k(k∈N*,2≤k≤n)份血液樣本分別取樣混合在一起檢驗,若結(jié)果為陰性,則這k份的血液全為陰性,因而這k份血液樣本只需檢驗一次就夠了,若檢驗結(jié)果為陽性,為了明確這k份血液究竟哪份為陽性,就需要對這k份再逐份檢驗,此時這k份血液的檢驗次數(shù)總共為k+1次.假設(shè)在接受檢驗的血液樣本中,每份樣本的檢驗結(jié)果是陽性還是陰性都是相互獨(dú)立的,且每份樣本是陽性的概率為p(0<p<1).(1)假設(shè)有5份血液樣本,其中只有兩份樣本為陽性,若采取逐份檢驗的方式,求恰好經(jīng)過3次檢驗就能把陽性樣本全部檢驗出來的概率.(2)現(xiàn)取其中的k(k∈N*,2≤k≤n)份血液樣本,采用逐份檢驗的方式,樣本需要檢驗的次數(shù)記為ξ1;采用混合檢驗的方式,樣本需要檢驗的總次數(shù)記為ξ2.(i)若k=4,且,試運(yùn)用概率與統(tǒng)計的知識,求p的值;(ii)若,證明:.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】根據(jù)三棱柱的特征補(bǔ)全為正方體,則,為直線與所成角,連接,則為等邊三角形即可得解.【詳解】根據(jù)直三棱柱的特征,補(bǔ)全可得如圖所示的正方體,易知,為直線與所成角,連接,則為等邊三角形,所以,所以直線與所成角的大小為.故選:B2、B【解析】設(shè)圓錐的母線長為R,底面半徑長為r,由題可知圓錐的軸截面是等邊三角形,根據(jù)體積公式計算可得,利用扇形的面積公式計算即可求得結(jié)果.【詳解】如圖,設(shè)圓錐的母線長為R,底面半徑長為r,由題可知圓錐的軸截面是等邊三角形,所以,圓錐的體積,解得,所以該圓錐的側(cè)面積為.故選:B3、B【解析】利用列舉法,結(jié)合古典概型概率計算公式,計算出所求概率.【詳解】從中任取個不同的數(shù)的方法有,共種,其中和為偶數(shù)的有共種,所以所求的概率為.故選:B【點睛】本小題主要考查古典概型概率計算,屬于基礎(chǔ)題.4、A【解析】由,結(jié)合基本不等式可得,由此可得,由此說明“”是“”的充分條件,再通過舉反例說明“”不是“”的必要條件,由此確定正確選項.【詳解】∵,∴(當(dāng)且僅當(dāng)時等號成立),(當(dāng)且僅當(dāng)時等號成立),∴(當(dāng)且僅當(dāng)時等號成立),若,則,∴,所以“”是“”的充分條件,當(dāng)時,,此時,∴“”不是“”的必要條件,∴“”是“”的充分不必要條件,故選:A.5、A【解析】由橢圓的面積為和兩焦點與短軸的一個端點構(gòu)成等邊三角形,得到求解.【詳解】由題意得,解得,所以橢圓的標(biāo)準(zhǔn)方程是.故選:A6、C【解析】根據(jù)極值點的意義,可知函數(shù)的導(dǎo)函數(shù)在上有且僅有一個零點.結(jié)合零點存在定理,即可求得的取值范圍.【詳解】函數(shù)則因為函數(shù)在上有且僅有一個極值點即在上有且僅有一個零點根據(jù)函數(shù)零點存在定理可知滿足即可代入可得解得故選:C【點睛】本題考查了函數(shù)極值點的意義,函數(shù)零點存在定理的應(yīng)用,屬于中檔題.7、A【解析】先求出集合,再根據(jù)集合的交集運(yùn)算,即可求出結(jié)果.【詳解】因為集合,所以.故選:A.8、B【解析】首先根據(jù)題意設(shè)出拋物線的方程,利用點在曲線上的條件為點的坐標(biāo)滿足曲線的方程,代入求得參數(shù)的值,最后得到答案.【詳解】解:根據(jù)題意設(shè)出拋物線的方程,因為點在拋物線上,所以有,解得,所以拋物線的方程是:,故選:B.9、D【解析】設(shè)數(shù)列的公比為q,由已知建立方程求得q,再利用等比數(shù)列的通項公式可求得答案.【詳解】解:因為數(shù)列是等比數(shù)列,是其前n項之積,,設(shè)數(shù)列的公比為q,所以,解得,所以,故選:D.10、C【解析】對方程進(jìn)行化簡可得雙曲線上一點到定點與定直線之比為常數(shù),進(jìn)而可得結(jié)果.【詳解】已知方程可以變形為,即,∴其表示雙曲線上一點到定點與定直線之比為常數(shù),又由,可得,故選:C.11、A【解析】利用古典概型的概率公式求解.【詳解】因為隨機(jī)模擬產(chǎn)生了以下18組隨機(jī)數(shù):,其中恰好第三次就停止包含的基本事件有:023,123,132共3個,所以由此可以估計,恰好第三次就停止的概率為,故選:A12、D【解析】設(shè)該設(shè)備第年的營運(yùn)費(fèi)為萬元,利用為等差數(shù)列可求年平均盈利額,利用基本不等式可求其最大值.【詳解】設(shè)該設(shè)備第年的營運(yùn)費(fèi)為萬元,則數(shù)列是以2為首項,2為公差的等差數(shù)列,則,則該設(shè)備使用年的營運(yùn)費(fèi)用總和為,設(shè)第n年的盈利總額為,則,故年平均盈利額為,因為,當(dāng)且僅當(dāng)時,等號成立,故當(dāng)時,年平均盈利額取得最大值4.故選:D.【點睛】本題考查等差數(shù)列在實際問題中的應(yīng)用,注意根據(jù)題設(shè)條件概括出數(shù)列的類型,另外用基本不等式求最值時注意檢驗等號成立的條件.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)題意求出每年底的本利和,歸納即可.【詳解】由題意知,第一年本利和為:元,第二年本利和為:元,第三年本利和為:元,以此類推,第十年本利和為:元,故答案:14、1【解析】若“”是真命題,則大于或等于函數(shù)在的最大值因為函數(shù)在上為增函數(shù),所以,函數(shù)在上的最大值為1,所以,,即實數(shù)的最小值為1.所以答案應(yīng)填:1.考點:1、命題;2、正切函數(shù)的性質(zhì).15、【解析】根據(jù)點是弦的中點,為坐標(biāo)原點,利用點差法求解.【詳解】設(shè),且,則,(1),(2)得:,,.又,,.故答案為:16、【解析】令n=n-1代回原式,相減可得,利用累乘法,即可得答案.【詳解】因為,所以,兩式相減可得,整理得,所以,整理得,又,解得.故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2).【解析】(1)由線面垂直、切線的性質(zhì)可得、,再根據(jù)線面垂直的判定即可證結(jié)論.(2)若,構(gòu)建為原點,、、為x、y、z軸的空間直角坐標(biāo)系,求面、面的法向量,利用空間向量夾角的坐標(biāo)表示及其對應(yīng)的余弦值求R,最后由圓錐的體積公式求體積.【小問1詳解】由題設(shè),底面圓,又是切線與圓的切點,∴底面圓,則,且,而,∴平面.【小問2詳解】由題設(shè),若,可構(gòu)建為原點,、、為x、y、z軸的空間直角坐標(biāo)系,又,可得,∴,,,有,,若是面的一個法向量,則,令,則,又面的一個法向量為,∴,可得,∴該圓錐的體積18、(1)圓心的坐標(biāo)為,半徑;(2)【解析】(1)利用配方法化圓的一般方程為標(biāo)準(zhǔn)方程,可得圓心坐標(biāo)與半徑;(2)由兩點間的距離公式求得,得到與,則的取值范圍可求【小問1詳解】解:由,得,圓心的坐標(biāo)為,半徑;【小問2詳解】解:,,,,的取值范圍是19、(1)證明見解析(2)【解析】(1)根據(jù)線面垂直的判定定理,結(jié)合面面垂直的判定定理進(jìn)行證明即可;(2)建立空間直角坐標(biāo)系,利用空間向量夾角公式,結(jié)合線面角定義進(jìn)行求解即可.【小問1詳解】∵,∴,,又,∴,∵,面,∴面,平面ABCD,平面平面【小問2詳解】∵平面平面,交AD于點F,平面,平面平面,∴平面,以為原點,,的方向分別為軸,軸的正方向建立空間直角坐標(biāo)系,則,,,,,,,,設(shè)平面的法向量為,則,求得法向量為,由,所以直線與平面所成角的正弦值為.20、(1);(2).【解析】(1)本題可根據(jù)橢圓的定義求出點的軌跡;(2)本題首先可設(shè)、,然后聯(lián)立橢圓與直線方程,通過韋達(dá)定理得出、,最后通過得出,代入、的值并計算,即可得出結(jié)果.【詳解】(1)因為點到兩點、的距離之和等于,所以結(jié)合橢圓定義易知,點的軌跡是以點、為焦點且的橢圓,則,,,點的軌跡.(2)設(shè),,聯(lián)立,整理得,則,,因為,所以,即,整理得,則,整理得,解得.【點睛】關(guān)鍵點點睛:本題考查根據(jù)橢圓定義求動點軌跡以及直線與拋物線相關(guān)問題的求解,橢圓的定義為動點到兩個定點的距離為一個固定的常數(shù),考查韋達(dá)定理的應(yīng)用,考查計算能力,是難題.21、(1)24(種)(2)21(種)【解析】(1)先根據(jù)共付費(fèi)6元得一人付費(fèi)2元一人付費(fèi)4元,再確定人與乘坐站數(shù),即可得結(jié)果;(2)先根據(jù)共付費(fèi)8元得一人付費(fèi)2元一人付費(fèi)6元或兩人都付費(fèi)4元,再求甲比乙先下地鐵的方案數(shù).【小問1詳解】由已知可得:甲、乙兩人共付費(fèi)6元,則甲、乙一人付費(fèi)2元一人付費(fèi)4元,又付費(fèi)2元的乘坐站數(shù)有1,2,3三種選擇,付費(fèi)4元的乘坐站數(shù)有4,5,6,7四種選,所以甲、乙下地鐵的方案共有(3×4)×2=24(種).【小問2詳解】甲、乙兩人共付費(fèi)8元,則甲、乙一人付費(fèi)2元一人付費(fèi)6元或兩人都付費(fèi)4元;當(dāng)甲付費(fèi)2元,乙付費(fèi)6元時,甲乘坐站數(shù)有1,2,3三種選擇,乙乘坐站數(shù)有8,9,10,11,12五種選擇,此時,共有35=15(種)方案;當(dāng)兩人都付費(fèi)4元時,若甲在第4站下地鐵,則乙可在第5,6,7站下地鐵,有3種方案;若甲在第5站下地鐵,則乙可在第6,7站下地鐵,有2種方案;若甲在第6站下地鐵,則乙可在第7站下地鐵,有1種方案;綜上,甲比乙先下地鐵的方案共有(種).22、(1);

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論