版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
蘇教七年級下冊期末解答題壓軸數學真題模擬試卷解析一、解答題1.在△ABC中,射線AG平分∠BAC交BC于點G,點D在BC邊上運動(不與點G重合),過點D作DE∥AC交AB于點E.(1)如圖1,點D在線段CG上運動時,DF平分∠EDB①若∠BAC=100°,∠C=30°,則∠AFD=;若∠B=40°,則∠AFD=;②試探究∠AFD與∠B之間的數量關系?請說明理由;(2)點D在線段BG上運動時,∠BDE的角平分線所在直線與射線AG交于點F試探究∠AFD與∠B之間的數量關系,并說明理由2.閱讀下列材料并解答問題:在一個三角形中,如果一個內角的度數是另一個內角度數的3倍,那么這樣的三角形我們稱為“夢想三角形”例如:一個三角形三個內角的度數分別是120°,40°,20°,這個三角形就是一個“夢想三角形”.反之,若一個三角形是“夢想三角形”,那么這個三角形的三個內角中一定有一個內角的度數是另一個內角度數的3倍.(1)如果一個“夢想三角形”有一個角為108°,那么這個“夢想三角形”的最小內角的度數為__________(2)如圖1,已知∠MON=60°,在射線OM上取一點A,過點A作AB⊥OM交ON于點B,以A為端點作射線AD,交線段OB于點C(點C不與O、B重合),若∠ACB=80°.判定△AOB、△AOC是否是“夢想三角形”,為什么?(3)如圖2,點D在△ABC的邊上,連接DC,作∠ADC的平分線交AC于點E,在DC上取一點F,使得∠EFC+∠BDC=180°,∠DEF=∠B.若△BCD是“夢想三角形”,求∠B的度數.3.在△ABC中,∠BAC=90°,點D是BC上一點,將△ABD沿AD翻折后得到△AED,邊AE交BC于點F.(1)如圖①,當AE⊥BC時,寫出圖中所有與∠B相等的角:;所有與∠C相等的角:.(2)若∠C-∠B=50°,∠BAD=x°(0<x≤45).①求∠B的度數;②是否存在這樣的x的值,使得△DEF中有兩個角相等.若存在,并求x的值;若不存在,請說明理由.4.解讀基礎:(1)圖1形似燕尾,我們稱之為“燕尾形”,請寫出、、、之間的關系,并說明理由;(2)圖2形似8字,我們稱之為“八字形”,請寫出、、、之間的關系,并說明理由:應用樂園:直接運用上述兩個結論解答下列各題(3)①如圖3,在中,、分別平分和,請直接寫出和的關系;②如圖4,.(4)如圖5,與的角平分線相交于點,與的角平分線相交于點,已知,,求和的度數.5.如圖,直線,一副直角三角板中,.(1)若如圖1擺放,當平分時,證明:平分.(2)若如圖2擺放時,則(3)若圖2中固定,將沿著方向平移,邊與直線相交于點,作和的角平分線相交于點(如圖3),求的度數.(4)若圖2中的周長,現將固定,將沿著方向平移至點與重合,平移后的得到,點的對應點分別是,請直接寫出四邊形的周長.(5)若圖2中固定,(如圖4)將繞點順時針旋轉,分鐘轉半圈,旋轉至與直線首次重合的過程中,當線段與的一條邊平行時,請直接寫出旋轉的時間.6.如圖1,點O為直線上一點,過點O作射線,使,將一把直角三角尺的直角頂點放在點O處,一邊在射線上,另一邊在直線的下方,其中.(1)將圖1中的三角尺繞點O順時針旋轉至圖2,使一邊在的內部,且恰好平分,求的度數;(2)將圖1中的三角尺繞點O順時針旋轉至圖3,使在的內部,請?zhí)骄颗c之間的數量關系,并說明理由.(3)將圖1中三角尺繞點O按每秒的速度沿順時針方向旋轉一周,旋轉過程中,在第_____秒時,邊恰好與射線平行;在第_______秒時,直線恰好平分銳角.7.如圖,在△ABC中,∠B=30°,∠C>∠B,AE平分∠BAC,交BC邊于點E.(1)如圖1,過點A作AD⊥BC于D,若已知∠C=50°,則∠EAD的度數為;(2)如圖2,過點A作AD⊥BC于D,若AD恰好又平分∠EAC,求∠C的度數;(3)如圖3,CF平分△ABC的外角∠BCG,交AE的延長線于點F,作FD⊥BC于D,設∠ACB=n°,試求∠DFE﹣∠AFC的值;(用含有n的代數式表示)(4)如圖4,在圖3的基礎上分別作∠BAE和∠BCF的角平分線,交于點F1,作F1D1⊥BC于D1,設∠ACB=n°,試直接寫出∠D1F1A﹣∠AF1C的值.(用含有n的代數式表示)8.直線與直線垂直相交于O,點A在射線上運動,點B在射線上運動.(1)如圖1,已知、分別是和角的平分線,點A、B在運動的過程中,的大小是否會發(fā)生變化?若發(fā)生變化,請說明理由;若不發(fā)生變化,試求出其值;(2)如圖2,延長至D,己知、的角平分線與的角平分線及其延長線相交于E、F.①求的度數.②在中,如果有一個角是另一個角的3倍,試求的度數.9.已知:射線(1)如圖1,的角平分線交射線與點,若,求的度數.(2)如圖2,若點在射線上,平分交于點,平分交于點,,求的度數.(3)如圖3,若,依次作出的角平分線,的角平分線,的角平分線,的角平分線,其中點,,,,,都在射線上,直接寫出的度數.10.已知E、D分別在的邊、上,C為平面內一點,、分別是、的平分線.(1)如圖1,若點C在上,且,求證:;(2)如圖2,若點C在的內部,且,請猜想、、之間的數量關系,并證明;(3)若點C在的外部,且,請根據圖3、圖4直接寫出結果出、、之間的數量關系.【參考答案】一、解答題1.(1)①115°;110°;②;理由見解析;(2);理由見解析【分析】(1)①若∠BAC=100°,∠C=30°,由三角形內角和定理求出∠B=50°,由平行線的性質得出∠EDB=∠C=30°,由解析:(1)①115°;110°;②;理由見解析;(2);理由見解析【分析】(1)①若∠BAC=100°,∠C=30°,由三角形內角和定理求出∠B=50°,由平行線的性質得出∠EDB=∠C=30°,由角平分線定義得出,,由三角形的外角性質得出∠DGF=100°,再由三角形的外角性質即可得出結果;若∠B=40°,則∠BAC+∠C=180°-40°=140°,由角平分線定義得出,,由三角形的外角性質即可得出結果;②由①得:∠EDB=∠C,,,由三角形的外角性質得出∠DGF=∠B+∠BAG,再由三角形的外角性質即可得出結論;(2)由(1)得:∠EDB=∠C,,,由三角形的外角性質和三角形內角和定理即可得出結論.【詳解】(1)①若∠BAC=100°,∠C=30°,則∠B=180°-100°-30°=50°,∵DE∥AC,∴∠EDB=∠C=30°,∵AG平分∠BAC,DF平分∠EDB,∴,,∴∠DGF=∠B+∠BAG=50°+50°=100°,∴∠AFD=∠DGF+∠FDG=100°+15°=115°;若∠B=40°,則∠BAC+∠C=180°-40°=140°,∵AG平分∠BAC,DF平分∠EDB,∴,,∵∠DGF=∠B+∠BAG,∴∠AFD=∠DGF+∠FDG=∠B+∠BAG+∠FDG=故答案為:115°;110°;②;理由如下:由①得:∠EDB=∠C,,,∵∠DGF=∠B+∠BAG,∴∠AFD=∠DGF+∠FDG=∠B+∠BAG+∠FDG=;(2)如圖2所示:;理由如下:由(1)得:∠EDB=∠C,,,∵∠AHF=∠B+∠BDH,∴∠AFD=180°-∠BAG-∠AHF.【點睛】本題考查了三角形內角和定理、三角形的外角性質、平行線的性質等知識;熟練掌握三角形內角和定理和三角形的外角性質是解題的關鍵.2.(1)36°或18°;(2)△AOB、△AOC都是“夢想三角形”,證明詳見解析;(3)∠B=36°或∠B=.【分析】(1)根據三角形內角和等于180°,如果一個“夢想三角形”有一個角為108°,解析:(1)36°或18°;(2)△AOB、△AOC都是“夢想三角形”,證明詳見解析;(3)∠B=36°或∠B=.【分析】(1)根據三角形內角和等于180°,如果一個“夢想三角形”有一個角為108°,可得另兩個角的和為72°,由三角形中一個內角是另一個內角的3倍時,可以分別求得最小角為180°﹣108°﹣108÷3°=36°,72°÷(1+3)=18°,由此比較得出答案即可;(2)根據垂直的定義、三角形內角和定理求出∠ABO、∠OAC的度數,根據“夢想三角形”的定義判斷即可;(3)根據同角的補角相等得到∠EFC=∠ADC,根據平行線的性質得到∠DEF=∠ADE,推出DE∥BC,得到∠CDE=∠BCD,根據角平分線的定義得到∠ADE=∠CDE,求得∠B=∠BCD,根據“夢想三角形”的定義求解即可.【詳解】解:當108°的角是另一個內角的3倍時,最小角為180°﹣108°﹣108÷3°=36°,當180°﹣108°=72°的角是另一個內角的3倍時,最小角為72°÷(1+3)=18°,因此,這個“夢想三角形”的最小內角的度數為36°或18°.故答案為:18°或36°.(2)△AOB、△AOC都是“夢想三角形”證明:∵AB⊥OM,∴∠OAB=90°,∴∠ABO=90°﹣∠MON=30°,∴∠OAB=3∠ABO,∴△AOB為“夢想三角形”,∵∠MON=60°,∠ACB=80°,∠ACB=∠OAC+∠MON,∴∠OAC=80°﹣60°=20°,∴∠AOB=3∠OAC,∴△AOC是“夢想三角形”.(3)解:∵∠EFC+∠BDC=180°,∠ADC+∠BDC=180°,∴∠EFC=∠ADC,∴AD∥EF,∴∠DEF=∠ADE,∵∠DEF=∠B,∴∠B=∠ADE,∴DE∥BC,∴∠CDE=∠BCD,∵AE平分∠ADC,∴∠ADE=∠CDE,∴∠B=∠BCD,∵△BCD是“夢想三角形”,∴∠BDC=3∠B,或∠B=3∠BDC,∵∠BDC+∠BCD+∠B=180°,∴∠B=36°或∠B=.【點睛】本題考查的是三角形內角和定理、“夢想三角形”的概念,用分類討論的思想解決問題是解本題的關鍵.3.(1)∠E、∠CAF;∠CDE、∠BAF;(2)①20°;②30【分析】(1)由翻折的性質和平行線的性質即可得與∠B相等的角;由等角代換即可得與∠C相等的角;(2)①由三角形內角和定理可得,解析:(1)∠E、∠CAF;∠CDE、∠BAF;(2)①20°;②30【分析】(1)由翻折的性質和平行線的性質即可得與∠B相等的角;由等角代換即可得與∠C相等的角;(2)①由三角形內角和定理可得,再由根據角的和差計算即可得∠C的度數,進而得∠B的度數.②根據翻折的性質和三角形外角及三角形內角和定理,用含x的代數式表示出∠FDE、∠DFE的度數,分三種情況討論求出符合題意的x值即可.【詳解】(1)由翻折的性質可得:∠E=∠B,∵∠BAC=90°,AE⊥BC,∴∠DFE=90°,∴180°-∠BAC=180°-∠DFE=90°,即:∠B+∠C=∠E+∠FDE=90°,∴∠C=∠FDE,∴AC∥DE,∴∠CAF=∠E,∴∠CAF=∠E=∠B故與∠B相等的角有∠CAF和∠E;∵∠BAC=90°,AE⊥BC,∴∠BAF+∠CAF=90°,∠CFA=180°-(∠CAF+∠C)=90°∴∠BAF+∠CAF=∠CAF+∠C=90°∴∠BAF=∠C又AC∥DE,∴∠C=∠CDE,∴故與∠C相等的角有∠CDE、∠BAF;(2)①∵∴又∵,∴∠C=70°,∠B=20°;②∵∠BAD=x°,∠B=20°則,,由翻折可知:∵,,∴,,當∠FDE=∠DFE時,,解得:;當∠FDE=∠E時,,解得:(因為0<x≤45,故舍去);當∠DFE=∠E時,,解得:(因為0<x≤45,故舍去);綜上所述,存在這樣的x的值,使得△DEF中有兩個角相等.且.【點睛】本題考查圖形的翻折、三角形內角和定理、平行線的判定及其性質、三角形外角的性質、等角代換,解題的關鍵是熟知圖形翻折的性質及綜合運用所學知識.4.(1),理由詳見解析;(2),理由詳見解析:(3)①;②360°;(4);.【分析】(1)根據三角形外角等于不相鄰的兩個內角之和即可得出結論;(2)根據三角形內角和定理及對頂角相等即可得出結解析:(1),理由詳見解析;(2),理由詳見解析:(3)①;②360°;(4);.【分析】(1)根據三角形外角等于不相鄰的兩個內角之和即可得出結論;(2)根據三角形內角和定理及對頂角相等即可得出結論;(3)①根據角平分線的定義及三角形內角和定理即可得出結論;②連結BE,由(2)的結論及四邊形內角和為360°即可得出結論;(4)根據(1)的結論、角平分線的性質以及三角形內角和定理即可得出結論.【詳解】(1).理由如下:如圖1,,,,;(2).理由如下:在中,,在中,,,;(3)①,,、分別平分和,,.故答案為:.②連結.∵,.故答案為:;(4)由(1)知,,,,,,,,,,,;.【點睛】本題考查了角平分線的性質,三角形內角和;熟練掌握角平分線的性質,進行合理的等量代換是解題的關鍵.5.(1)見詳解;(2)15°;(3)67.5°;(4)45cm;(5)10s或30s或40s【分析】(1)運用角平分線定義及平行線性質即可證得結論;(2)如圖2,過點E作EK∥MN,利用平行線性解析:(1)見詳解;(2)15°;(3)67.5°;(4)45cm;(5)10s或30s或40s【分析】(1)運用角平分線定義及平行線性質即可證得結論;(2)如圖2,過點E作EK∥MN,利用平行線性質即可求得答案;(3)如圖3,分別過點F、H作FL∥MN,HR∥PQ,運用平行線性質和角平分線定義即可得出答案;(4)根據平移性質可得D′A=DF,DD′=EE′=AF=5cm,再結合DE+EF+DF=35cm,可得出答案;(5)設旋轉時間為t秒,由題意旋轉速度為1分鐘轉半圈,即每秒轉3°,分三種情況:①當BC∥DE時,②當BC∥EF時,③當BC∥DF時,分別求出旋轉角度后,列方程求解即可.【詳解】(1)如圖1,在△DEF中,∠EDF=90°,∠DFE=30°,∠DEF=60°,∵ED平分∠PEF,∴∠PEF=2∠PED=2∠DEF=2×60°=120°,∵PQ∥MN,∴∠MFE=180°?∠PEF=180°?120°=60°,∴∠MFD=∠MFE?∠DFE=60°?30°=30°,∴∠MFD=∠DFE,∴FD平分∠EFM;(2)如圖2,過點E作EK∥MN,∵∠BAC=45°,∴∠KEA=∠BAC=45°,∵PQ∥MN,EK∥MN,∴PQ∥EK,∴∠PDE=∠DEK=∠DEF?∠KEA,又∵∠DEF=60°.∴∠PDE=60°?45°=15°,故答案為:15°;(3)如圖3,分別過點F、H作FL∥MN,HR∥PQ,∴∠LFA=∠BAC=45°,∠RHG=∠QGH,∵FL∥MN,HR∥PQ,PQ∥MN,∴FL∥PQ∥HR,∴∠QGF+∠GFL=180°,∠RHF=∠HFL=∠HFA?∠LFA,∵∠FGQ和∠GFA的角平分線GH、FH相交于點H,∴∠QGH=∠FGQ,∠HFA=∠GFA,∵∠DFE=30°,∴∠GFA=180°?∠DFE=150°,∴∠HFA=∠GFA=75°,∴∠RHF=∠HFL=∠HFA?∠LFA=75°?45°=30°,∴∠GFL=∠GFA?∠LFA=150°?45°=105°,∴∠RHG=∠QGH=∠FGQ=(180°?105°)=37.5°,∴∠GHF=∠RHG+∠RHF=37.5°+30°=67.5°;(4)如圖4,∵將△DEF沿著CA方向平移至點F與A重合,平移后的得到△D′E′A,∴D′A=DF,DD′=EE′=AF=5cm,∵DE+EF+DF=35cm,∴DE+EF+D′A+AF+DD′=35+10=45(cm),即四邊形DEAD′的周長為45cm;(5)設旋轉時間為t秒,由題意旋轉速度為1分鐘轉半圈,即每秒轉3°,分三種情況:BC∥DE時,如圖5,此時AC∥DF,∴∠CAE=∠DFE=30°,∴3t=30,解得:t=10;BC∥EF時,如圖6,∵BC∥EF,∴∠BAE=∠B=45°,∴∠BAM=∠BAE+∠EAM=45°+45°=90°,∴3t=90,解得:t=30;BC∥DF時,如圖7,延長BC交MN于K,延長DF交MN于R,∵∠DRM=∠EAM+∠DFE=45°+30°=75°,∴∠BKA=∠DRM=75°,∵∠ACK=180°?∠ACB=90°,∴∠CAK=90°?∠BKA=15°,∴∠CAE=180°?∠EAM?∠CAK=180°?45°?15°=120°,∴3t=120,解得:t=40,綜上所述,△ABC繞點A順時針旋轉的時間為10s或30s或40s時,線段BC與△DEF的一條邊平行.【點睛】本題主要考查了平行線性質及判定,角平分線定義,平移的性質等,添加輔助線,利用平行線性質是解題關鍵.6.(1)150°;(2)∠BOM-∠CON=30°;(3)9秒或27秒,6秒或24秒【分析】(1)根據鄰補角的定義求出∠AOC=120°,再根據角平分線的定義求出∠COM,然后根據∠CON=∠CO解析:(1)150°;(2)∠BOM-∠CON=30°;(3)9秒或27秒,6秒或24秒【分析】(1)根據鄰補角的定義求出∠AOC=120°,再根據角平分線的定義求出∠COM,然后根據∠CON=∠COM+90°解答;(2)用∠BOM和∠CON表示出∠BON,然后列出方程整理即可得解.(3)分別分兩種情況根據平行線的性質和旋轉的性質求出旋轉角,然后除以旋轉速度即可得解.【詳解】解:(1)∵∠AOC=120°,∴∠BOC=60°,又∵OM平分∠AOC,∴∠COM=∠BOC=60°,∴∠CON=∠COM+90°=150°;(2)∵∠MON=90°,∠BOC=60°,∴∠BON=90°-∠BOM,∠BON=60°-∠CON,∴90°-∠BOM=60°-∠CON,∴∠BOM-∠CON=30°,故∠BOM與∠CON之間的數量關系為:∠BOM-∠CON=30°.(3)∵∠OMN=30°,∴∠N=90°-30°=60°,∵∠BOC=60°,∴當ON在直線AB上時,MN∥OC,如圖,則旋轉角為90°或270°,∵每秒順時針旋轉10°,∴時間為9秒或27秒;當直線ON恰好平分銳角∠BOC時,則旋轉角為90°-30°=60°或90°+150°=240°,∵每秒順時針旋轉10°,∴時間為6秒或24秒.【點睛】本題考查了旋轉的性質,角平分線的定義,平行線的性質,讀懂題目信息并熟練掌握各性質是解題的關鍵,難點在于(3)要分情況討論.7.(1)10°;(2)∠C的度數為70°;(3)∠DFE﹣∠AFC的值為;(4)∠D1F1A﹣∠AF1C的值為.【分析】(1)根據∠EAD=∠EAC-∠DAC,求出∠EAC,∠DAC即可解決問題.解析:(1)10°;(2)∠C的度數為70°;(3)∠DFE﹣∠AFC的值為;(4)∠D1F1A﹣∠AF1C的值為.【分析】(1)根據∠EAD=∠EAC-∠DAC,求出∠EAC,∠DAC即可解決問題.(2)設∠CAD=x,則∠EAD=∠CAD=x,∠EAB=∠EAC=2x,利用三角形內角和定理構建方程求出x即可解決問題.(3)設∠CAD=x,則∠EAD=∠CAD=x,∠EAB=∠EAC=2x,用n,x表示出∠DFE,∠AFC,再結合三角形內角和定理解決問題即可.(4)設∠FAC=∠FAB=y.用n,x表示出∠D1F1A,∠AF1C,再結合三角形內角和定理解決問題即可.【詳解】解:(1)∵∠B=30°,∠C=50°,∴∠BAC=180°-∠B-∠C=100°,∵AE平分∠BAC,∴∠CAE=∠BAC=50°,∵AD⊥BC,∴∠ADC=90°,∴∠DAC=90°-50°=40°,∴∠EAD=∠EAC-∠DAC=50°-40°=10°.(2)設∠CAD=x,則∠EAD=∠CAD=x,∠EAB=∠EAC=2x,∵AD⊥EC,∴∠ADE=∠ADC=90°,∴∠AED+∠EAD=90°,∠C+∠DAC=90°,∴∠AED=∠C=∠B+∠EAB=30°+2x,在△ABC中,由三角形內角和定理可得:30°+30°+2x+4x=180°,解得x=20°,∴∠C=30°+40°=70°.(3)設∠FAC=∠FAB=x.則有∠AEC=∠DEF=180°-n-x,∵FD⊥BC,∴∠FDE=90°,∴∠DFA=90°-(180°-n-x)=n+x-90°,∵CF平分∠BCG,∴∠FCG=(180°-n),∵∠AFC=∠FCG-∠FAC=(180°-n)-x=90°-n-x=15°,∴∠DFE-∠AFC=n+x-105°,∵2x+30°+n=180°,∴x=75°-n,∴∠DFE-∠AFC=n-30°.(4)設∠FAC=∠FAB=y.由題意同法可得:∠D1F1A=90°-(180°-n-y)=n+y-90°,∠AF1C=180°-y-n-(180°-n)=135°-y-n,∴∠D1F1A-∠AF1C=n+y-90°-(135°-y-n)=n+3y-225°,∵2y+30°+n=180°,∴y=75°-n,∴∠D1F1A-∠AF1C=n+y-90°-(135°-x-n)=n+225°-n-225°=n.【點睛】本題考查了三角形內角和定理,角平分線的定義,三角形的外角的性質等知識,解題的關鍵是學會利用參數解決問題,本題有一定的難度.8.(1)不變,135°;(2)①90°;②60°或45°【分析】(1)根據直線MN與直線PQ垂直相交于O可知∠AOB=90°,再由AC、BC分別是∠BAO和∠ABO角的平分線得出∠BAC=∠OAB解析:(1)不變,135°;(2)①90°;②60°或45°【分析】(1)根據直線MN與直線PQ垂直相交于O可知∠AOB=90°,再由AC、BC分別是∠BAO和∠ABO角的平分線得出∠BAC=∠OAB,∠ABC=∠ABO,由三角形內角和定理即可得出結論;(2)①由∠BAO與∠BOQ的角平分線相交于E可知∠EAO=∠BAO,∠EOQ=∠BOQ,進而得出∠E的度數,由AE、AF分別是∠BAO和∠OAD的角平分線可知∠EAF=90°;②在△AEF中,由一個角是另一個角的3倍分四種情況進行分類討論.【詳解】解:(1)∠ACB的大小不變,∵直線MN與直線PQ垂直相交于O,∴∠AOB=90°,∴∠OAB+∠OBA=90°,∵AC、BC分別是∠BAO和∠ABO角的平分線,∴∠BAC=∠OAB,∠ABC=∠ABO,∴∠BAC+∠ABC=(∠OAB+∠ABO)=×90°=45°,∴∠ACB=135°;(2)①∵AE、AF分別是∠BAO和∠OAD的角平分線,∴∠EAO=∠BAO,∠FAO=∠DAO,∴∠EAF=(∠BAO+∠DAO)=×180°=90°.故答案為:90;②∵∠BAO與∠BOQ的角平分線相交于E,∴∠EAO=∠BAO,∠EOQ=∠BOQ,∴∠E=∠EOQ-∠EAO=(∠BOQ-∠BAO)=∠ABO,即∠ABO=2∠E,在△AEF中,∵有一個角是另一個角的3倍,故分四種情況討論:①∠EAF=3∠E,∠E=30°,則∠ABO=60°;②∠EAF=3∠F,∠E=60°,∠ABO=120°(舍去);③∠F=3∠E,∠E=22.5°,∠ABO=45°;④∠E=3∠F,∠E=67.5°,∠ABO=135°(舍去).∴∠ABO為60°或45°.【點睛】本題考查的是三角形內角和定理、三角形外角性質以及角平分線的定義的運用,熟知三角形內角和是180°是解答此題的關鍵.9.(1)64°;(2)78°;(3)【分析】(1)根據平行線的性質得出∠A=∠1,根據平角的定義求得∠AOP=116°,根據角平分線的性質和平行線的性質求得∠A的度數;(2)利用已知條件和平行線解析:(1)64°;(2)78°;(3)【分析】(1)根據平行線的性質得出∠A=∠1,根據平角的定義求得∠AOP=116°,根據角平分線的性質和平行線的性質求得∠A的度數;(2)利用已知條件和平行線的性質、角平分線的性質解答即可.(3)分別求出∠ABO,∠AB1O,∠AB2O,得到規(guī)律,即可求得∠ABnO.【詳解】解:(1)如圖1,∵OP∥AE,∴∠A=∠1,∵∠BOP=58°,OB是∠AOP的角平分線,∴∠AOP=2∠BOP=116°,∴∠1=180°-116°=64°,∴∠A=∠1=64°;(2)如圖2,∵OP∥AE,∴∠POD=∠ADO=39°,∵OB平分∠AOC,∴∠AOB=∠BOC,∵OD平分∠COP,∴∠COP=2∠DOP=78°,∴∠ABO-∠AOB=∠COP=78°;(3)如圖3,由(1)可知,∠ABO=(180°-m),∠AB1O=(180°-∠OBB1)=∠ABO=(180°-m),∠AB2O=(180°-m),…則∠ABnO=.【點睛】本題考查了平行線的性質,三角形外角的性質,三角形
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年中國養(yǎng)腎保健品市場運行格局及投資戰(zhàn)略研究報告
- 幼兒園科學啟蒙課堂活動計劃
- 初中語文古文詞匯識記與運用指導
- 職業(yè)技能培訓教案模板
- 初中英語話題單元口語訓練試卷
- 人力資源招聘流程優(yōu)化方案與實施細則
- 孤獨癥兒童康復訓練教案
- 2025西歐智能交通系統(tǒng)技術研發(fā)戰(zhàn)略規(guī)劃體系深度研究及自動駕駛技術產業(yè)前景分析主要文獻
- 2025西南非乳制品加工業(yè)市場環(huán)境供需研究產業(yè)發(fā)展投資機會評估規(guī)劃分析報告
- 2025西南地區(qū)旅游資源開發(fā)競爭分析及文化國際化報告
- 法律診所(第三版)課件全套 第1-10章 入門、會見-調解
- QC工作流程圖模板
- 電梯維保服務投標方案
- 4繼電控制線路故障檢測與排除
- 國家開放大學《公共部門人力資源管理》期末機考資料
- 大學生職業(yè)規(guī)劃與就業(yè)指導知到章節(jié)答案智慧樹2023年廣西中醫(yī)藥大學
- GB/T 20969.2-2021特殊環(huán)境條件高原機械第2部分:高原對工程機械的要求
- PMBOK指南第6版中文版
- 快速記憶法訓練課程速讀課件
- 步戰(zhàn)略采購方法細解 CN revison 課件
- 酒店裝飾裝修工程施工進度表
評論
0/150
提交評論