版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
數(shù)學(xué)蘇教七年級下冊期末解答題壓軸重點(diǎn)初中試題及解析一、解答題1.如圖,已知直線a∥b,∠ABC=100°,BD平分∠ABC交直線a于點(diǎn)D,線段EF在線段AB的左側(cè),線段EF沿射線AD的方向平移,在平移的過程中BD所在的直線與EF所在的直線交于點(diǎn)P.問∠1的度數(shù)與∠EPB的度數(shù)又怎樣的關(guān)系?(特殊化)(1)當(dāng)∠1=40°,交點(diǎn)P在直線a、直線b之間,求∠EPB的度數(shù);(2)當(dāng)∠1=70°,求∠EPB的度數(shù);(一般化)(3)當(dāng)∠1=n°,求∠EPB的度數(shù)(直接用含n的代數(shù)式表示).2.如圖,在中,與的角平分線交于點(diǎn).(1)若,則;(2)若,則;(3)若,與的角平分線交于點(diǎn),的平分線與的平分線交于點(diǎn),,的平分線與的平分線交于點(diǎn),則.3.如圖1,已知線段AB、CD相交于點(diǎn)O,連接AC、BD,我們把形如圖1的圖形稱之為“8字形”.如圖2,∠CAB和∠BDC的平分線AP和DP相交于點(diǎn)P,并且與CD、AB分別相交于M、N.試解答下列問題:(1)仔細(xì)觀察,在圖2中有個(gè)以線段AC為邊的“8字形”;(2)在圖2中,若∠B=96°,∠C=100°,求∠P的度數(shù);(3)在圖2中,若設(shè)∠C=α,∠B=β,∠CAP=∠CAB,∠CDP=∠CDB,試問∠P與∠C、∠B之間存在著怎樣的數(shù)量關(guān)系(用α、β表示∠P),并說明理由;(4)如圖3,則∠A+∠B+∠C+∠D+∠E+∠F的度數(shù)為.4.在中,,,點(diǎn)在直線上運(yùn)動(dòng)(不與點(diǎn)、重合),點(diǎn)在射線上運(yùn)動(dòng),且,設(shè).(1)如圖①,當(dāng)點(diǎn)在邊上,且時(shí),則__________,__________;(2)如圖②,當(dāng)點(diǎn)運(yùn)動(dòng)到點(diǎn)的左側(cè)時(shí),其他條件不變,請猜想和的數(shù)量關(guān)系,并說明理由;(3)當(dāng)點(diǎn)運(yùn)動(dòng)到點(diǎn)的右側(cè)時(shí),其他條件不變,和還滿足(2)中的數(shù)量關(guān)系嗎?請?jiān)趫D③中畫出圖形,并給予證明.(畫圖痕跡用黑色簽字筆加粗加黑)5.如果三角形的兩個(gè)內(nèi)角與滿足,那么我們稱這樣的三角形是“準(zhǔn)互余三角形”.(1)如圖1,在中,,是的角平分線,求證:是“準(zhǔn)互余三角形”;(2)關(guān)于“準(zhǔn)互余三角形”,有下列說法:①在中,若,,,則是“準(zhǔn)互余三角形”;②若是“準(zhǔn)互余三角形”,,,則;③“準(zhǔn)互余三角形”一定是鈍角三角形.其中正確的結(jié)論是___________(填寫所有正確說法的序號);(3)如圖2,,為直線上兩點(diǎn),點(diǎn)在直線外,且.若是直線上一點(diǎn),且是“準(zhǔn)互余三角形”,請直接寫出的度數(shù).6.已知:∠MON=36°,OE平分∠MON,點(diǎn)A,B分別是射線OM,OE,上的動(dòng)點(diǎn)(A,B不與點(diǎn)O重合),點(diǎn)D是線段OB上的動(dòng)點(diǎn),連接AD并延長交射線ON于點(diǎn)C,設(shè)∠OAC=x,(1)如圖1,若AB∥ON,則①∠ABO的度數(shù)是______;②當(dāng)∠BAD=∠ABD時(shí),x=______;當(dāng)∠BAD=∠BDA時(shí),x=______;(2)如圖2,若AB⊥OM,則是否存在這樣的x的值,使得△ABD中有兩個(gè)相等的角?若存在,求出x的值;若不存在,請說明理由.7.在中,,是的角平分線,是射線上任意一點(diǎn)(不與、、三點(diǎn)重合),過點(diǎn)作,垂足為,交直線于.(1)如圖①,當(dāng)點(diǎn)在線段上時(shí),(i)說明.(ii)作的角平分線交直線于點(diǎn),則與有怎樣的位置關(guān)系?畫出圖形并說明理由.(2)當(dāng)點(diǎn)在的延長線上時(shí),作的角平分線交直線于點(diǎn),此時(shí)與的位置關(guān)系為___________.8.如圖1,直線m與直線n相交于O,點(diǎn)A在直線m上運(yùn)動(dòng),點(diǎn)B在直線n上運(yùn)動(dòng),AC、BC分別是∠BAO和∠ABO的角平分線.(1)若∠BAO=50o,∠ABO=40o,求∠ACB的度數(shù);(2)如圖2,若∠AOB=α,BD是△AOB的外角∠OBE的角平分線,BD與AC相交于點(diǎn)D,點(diǎn)A、B在運(yùn)動(dòng)的過程中,∠ADB的大小是否會(huì)發(fā)生變化?若發(fā)生變化,請說明理由;若不發(fā)生變化,試求出其度數(shù)(用含α的代數(shù)式表示);(3)如圖3,若直線m與直線n相互垂直,延長AB至E,已知∠ABO、∠OBE的角平分線與∠BOQ的角平分線及延長線分別相交于D、F,在△BDF中,如果有一個(gè)角是另一個(gè)角的3倍,請直接寫出∠BAO的度數(shù).9.直線與直線垂直相交于O,點(diǎn)A在射線上運(yùn)動(dòng),點(diǎn)B在射線上運(yùn)動(dòng).(1)如圖1,已知、分別是和角的平分線,點(diǎn)A、B在運(yùn)動(dòng)的過程中,的大小是否會(huì)發(fā)生變化?若發(fā)生變化,請說明理由;若不發(fā)生變化,試求出其值;(2)如圖2,延長至D,己知、的角平分線與的角平分線及其延長線相交于E、F.①求的度數(shù).②在中,如果有一個(gè)角是另一個(gè)角的3倍,試求的度數(shù).10.認(rèn)真閱讀下面關(guān)于三角形內(nèi)外角平分線所夾角的探究片段,完成所提出的問題.(探究1):如圖1,在ΔABC中,O是∠ABC與∠ACB的平分線BO和CO的交點(diǎn),通過分析發(fā)現(xiàn)∠BOC=90o+∠A,(請補(bǔ)齊空白處)理由如下:∵BO和CO分別是∠ABC和∠ACB的角平分線,∴∠1=∠ABC,_________________,在ΔABC中,∠A+∠ABC+∠ACB=180o.∴∠1+∠2=(∠ABC+∠ACB)=(180o-∠A)=90o-∠A,∴∠BOC=180o-(∠1+∠2)=180o-(________)=90o+∠A.(探究2):如圖2,已知O是外角∠DBC與外角∠ECB的平分線BO和CO的交點(diǎn),則∠BOC與∠A有怎樣的關(guān)系?請說明理由.(應(yīng)用):如圖3,在RtΔAOB中,∠AOB=90o,已知AB不平行與CD,AC、BD分別是∠BAO和∠ABO的角平分線,又CE、DE分別是∠ACD和∠BDC的角平分線,則∠E=_______;(拓展):如圖4,直線MN與直線PQ相交于O,∠MOQ=60o,點(diǎn)A在射線OP上運(yùn)動(dòng),點(diǎn)B在射線OM上運(yùn)動(dòng),延長BA至G,已知∠BAO、∠OAG的角平分線與∠BOQ的角平分線及其延長線交于E、F,在ΔAEF中,如果有一個(gè)角是另一個(gè)角的4倍,則∠ABO=______.【參考答案】一、解答題1.(1)∠EPB=170°;(2)①當(dāng)交點(diǎn)P在直線b的下方時(shí):∠EPB=20°,②當(dāng)交點(diǎn)P在直線a,b之間時(shí):∠EPB=160°,③當(dāng)交點(diǎn)P在直線a的上方時(shí):∠EPB=∠1﹣50°=20°;(3)①當(dāng)解析:(1)∠EPB=170°;(2)①當(dāng)交點(diǎn)P在直線b的下方時(shí):∠EPB=20°,②當(dāng)交點(diǎn)P在直線a,b之間時(shí):∠EPB=160°,③當(dāng)交點(diǎn)P在直線a的上方時(shí):∠EPB=∠1﹣50°=20°;(3)①當(dāng)交點(diǎn)P在直線a,b之間時(shí):∠EPB=180°﹣|n°﹣50°|;②當(dāng)交點(diǎn)P在直線a上方或直線b下方時(shí):∠EPB=|n°﹣50°|.【分析】(1)利用外角和角平分線的性質(zhì)直接可求解;(2)分三種情況討論:①當(dāng)交點(diǎn)P在直線b的下方時(shí);②當(dāng)交點(diǎn)P在直線a,b之間時(shí);③當(dāng)交點(diǎn)P在直線a的上方時(shí);分別畫出圖形求解;(3)結(jié)合(2)的探究,分兩種情況得到結(jié)論:①當(dāng)交點(diǎn)P在直線a,b之間時(shí);②當(dāng)交點(diǎn)P在直線a上方或直線b下方時(shí);【詳解】解:(1)∵BD平分∠ABC,∴∠ABD=∠DBC=∠ABC=50°,∵∠EPB是△PFB的外角,∴∠EPB=∠PFB+∠PBF=∠1+(180°﹣50°)=170°;(2)①當(dāng)交點(diǎn)P在直線b的下方時(shí):∠EPB=∠1﹣50°=20°;②當(dāng)交點(diǎn)P在直線a,b之間時(shí):∠EPB=50°+(180°﹣∠1)=160°;③當(dāng)交點(diǎn)P在直線a的上方時(shí):∠EPB=∠1﹣50°=20°;(3)①當(dāng)交點(diǎn)P在直線a,b之間時(shí):∠EPB=180°﹣|n°﹣50°|;②當(dāng)交點(diǎn)P在直線a上方或直線b下方時(shí):∠EPB=|n°﹣50°|;【點(diǎn)睛】考查知識點(diǎn):平行線的性質(zhì);三角形外角性質(zhì).根據(jù)動(dòng)點(diǎn)P的位置,分類畫圖,結(jié)合圖形求解是解決本題的關(guān)鍵.?dāng)?shù)形結(jié)合思想的運(yùn)用是解題的突破口.2.(1)110(2)(90+n)(3)×90°+n°【分析】(1)根據(jù)角平分線的性質(zhì),結(jié)合三角形的內(nèi)角和定理可得到角之間的關(guān)系,然后求解即可;(2)根據(jù)BO、CO分別是∠ABC與∠ACB的角平解析:(1)110(2)(90+n)(3)×90°+n°【分析】(1)根據(jù)角平分線的性質(zhì),結(jié)合三角形的內(nèi)角和定理可得到角之間的關(guān)系,然后求解即可;(2)根據(jù)BO、CO分別是∠ABC與∠ACB的角平分線,用n°的代數(shù)式表示出∠OBC與∠OCB的和,再根據(jù)三角形的內(nèi)角和定理求出∠BOC的度數(shù);(3)根據(jù)規(guī)律直接計(jì)算即可.【詳解】解:(1)∵∠A=40°,∴∠ABC+∠ACB=140°,∵點(diǎn)O是∠AB故答案為:110°;C與∠ACB的角平分線的交點(diǎn),∴∠OBC+∠OCB=70°,∴∠BOC=110°.(2)∵∠A=n°,∴∠ABC+∠ACB=180°-n°,∵BO、CO分別是∠ABC與∠ACB的角平分線,∴∠OBC+∠OCB=∠ABC+∠ACB=(∠ABC+∠ACB)=(180°﹣n°)=90°﹣n°,∴∠BOC=180°﹣(∠OBC+∠OCB)=90°+n°.故答案為:(90+n);(3)由(2)得∠O=90°+n°,∵∠ABO的平分線與∠ACO的平分線交于點(diǎn)O1,∴∠O1BC=∠ABC,∠O1CB=∠ACB,∴∠O1=180°﹣(∠ABC+∠ACB)=180°﹣(180°﹣∠A)=×180°+n°,同理,∠O2=×180°+n°,∴∠On=×180°+n°,∴∠O2017=×180°+n°,故答案為:×90°+n°.【點(diǎn)睛】本題考查了三角形內(nèi)角和定理,角平分線定義的應(yīng)用,注意:三角形的內(nèi)角和等于180°.3.(1)3;(2)98°;(3)∠P=(β+2α),理由見解析;(4)360°.【分析】(1)以M為交點(diǎn)的“8字形”有1個(gè),以O(shè)為交點(diǎn)的“8字形”有2個(gè);(2)根據(jù)角平分線的定義得到∠CAP=∠解析:(1)3;(2)98°;(3)∠P=(β+2α),理由見解析;(4)360°.【分析】(1)以M為交點(diǎn)的“8字形”有1個(gè),以O(shè)為交點(diǎn)的“8字形”有2個(gè);(2)根據(jù)角平分線的定義得到∠CAP=∠BAP,∠BDP=∠CDP,再根據(jù)三角形內(nèi)角和定理得到∠CAP+∠C=∠CDP+∠P,∠BAP+∠P=∠BDP+∠B,兩等式相減得到∠C﹣∠P=∠P﹣∠B,即∠P=(∠C+∠B),然后把∠C=100°,∠B=96°代入計(jì)算即可;(3)與(2)的證明方法一樣得到∠P=(2∠C+∠B).(4)根據(jù)三角形內(nèi)角與外角的關(guān)系可得∠B+∠A=∠1,∠C+∠D=∠2,再根據(jù)四邊形內(nèi)角和為360°可得答案.【詳解】解:(1)在圖2中有3個(gè)以線段AC為邊的“8字形”,故答案為3;(2)∵∠CAB和∠BDC的平分線AP和DP相交于點(diǎn)P,∴∠CAP=∠BAP,∠BDP=∠CDP,∵∠CAP+∠C=∠CDP+∠P,∠BAP+∠P=∠BDP+∠B,∴∠C﹣∠P=∠P﹣∠B,即∠P=(∠C+∠B),∵∠C=100°,∠B=96°∴∠P=(100°+96°)=98°;(3)∠P=(β+2α);理由:∵∠CAP=∠CAB,∠CDP=∠CDB,∴∠BAP=∠BAC,∠BDP=∠BDC,∵∠CAP+∠C=∠CDP+∠P,∠BAP+∠P=∠BDP+∠B,∴∠C﹣∠P=∠BDC﹣∠BAC,∠P﹣∠B=∠BDC﹣∠BAC,∴2(∠C﹣∠P)=∠P﹣∠B,∴∠P=(∠B+2∠C),∵∠C=α,∠B=β,∴∠P=(β+2α);(4)∵∠B+∠A=∠1,∠C+∠D=∠2,∴∠A+∠B+∠C+∠D=∠1+∠2,∵∠1+∠2+∠F+∠E=360°,∴∠A+∠B+∠C+∠D+∠E+∠F=360°.故答案為360°.4.(1)60,30;(2)∠BAD=2∠CDE,證明見解析;(3)成立,∠BAD=2∠CDE,證明見解析【分析】(1)如圖①,將∠BAC=100°,∠DAC=40°代入∠BAD=∠BAC-∠DAC解析:(1)60,30;(2)∠BAD=2∠CDE,證明見解析;(3)成立,∠BAD=2∠CDE,證明見解析【分析】(1)如圖①,將∠BAC=100°,∠DAC=40°代入∠BAD=∠BAC-∠DAC,求出∠BAD.在△ABC中利用三角形內(nèi)角和定理求出∠ABC=∠ACB=40°,根據(jù)三角形外角的性質(zhì)得出∠ADC=∠ABC+∠BAD=100°,在△ADE中利用三角形內(nèi)角和定理求出∠ADE=∠AED=70°,那么∠CDE=∠ADC-∠ADE=30°;(2)如圖②,在△ABC和△ADE中利用三角形內(nèi)角和定理求出∠ABC=∠ACB=40°,∠ADE=∠AED=.根據(jù)三角形外角的性質(zhì)得出∠CDE=∠ACB-∠AED=,再由∠BAD=∠DAC-∠BAC得到∠BAD=n-100°,從而得出結(jié)論∠BAD=2∠CDE;(3)如圖③,在△ABC和△ADE中利用三角形內(nèi)角和定理求出∠ABC=∠ACB=40°,∠ADE=∠AED=.根據(jù)三角形外角的性質(zhì)得出∠CDE=∠ACD-∠AED=,再由∠BAD=∠BAC+∠DAC得到∠BAD=100°+n,從而得出結(jié)論∠BAD=2∠CDE.【詳解】解:(1)∠BAD=∠BAC-∠DAC=100°-40°=60°.∵在△ABC中,∠BAC=100°,∠ABC=∠ACB,∴∠ABC=∠ACB=40°,∴∠ADC=∠ABC+∠BAD=40°+60°=100°.∵∠DAC=40°,∠ADE=∠AED,∴∠ADE=∠AED=70°,∴∠CDE=∠ADC-∠ADE=100°-70°=30°.故答案為60,30.(2)∠BAD=2∠CDE,理由如下:如圖②,在△ABC中,∠BAC=100°,∴∠ABC=∠ACB=40°.在△ADE中,∠DAC=n,∴∠ADE=∠AED=,∵∠ACB=∠CDE+∠AED,∴∠CDE=∠ACB-∠AED=40°-=,∵∠BAC=100°,∠DAC=n,∴∠BAD=n-100°,∴∠BAD=2∠CDE.(3)成立,∠BAD=2∠CDE,理由如下:如圖③,在△ABC中,∠BAC=100°,∴∠ABC=∠ACB=40°,∴∠ACD=140°.在△ADE中,∠DAC=n,∴∠ADE=∠AED=,∵∠ACD=∠CDE+∠AED,∴∠CDE=∠ACD-∠AED=140°-=,∵∠BAC=100°,∠DAC=n,∴∠BAD=100°+n,∴∠BAD=2∠CDE.【點(diǎn)睛】本題考查了三角形內(nèi)角和定理,三角形外角的性質(zhì),從圖形中得出相關(guān)角度之間的關(guān)系是解題的關(guān)鍵.5.(1)見解析;(2)①③;(3)∠APB的度數(shù)是10°或20°或40°或110°【分析】(1)由和是的角平分線,證明即可;(2)根據(jù)“準(zhǔn)互余三角形”的定義逐個(gè)判斷即可;(3)根據(jù)“準(zhǔn)互余三角解析:(1)見解析;(2)①③;(3)∠APB的度數(shù)是10°或20°或40°或110°【分析】(1)由和是的角平分線,證明即可;(2)根據(jù)“準(zhǔn)互余三角形”的定義逐個(gè)判斷即可;(3)根據(jù)“準(zhǔn)互余三角形”的定義,分類討論:①2∠A+∠ABC=90°;②∠A+2∠APB=90°;③2∠APB+∠ABC=90°;④2∠A+∠APB=90°,由三角形內(nèi)角和定理和外角的性質(zhì)結(jié)合“準(zhǔn)互余三角形”的定義,即可求出答案.【詳解】(1)證明:∵在中,,∴,∵BD是的角平分線,∴,∴,∴是“準(zhǔn)互余三角形”;(2)①∵,∴,∴是“準(zhǔn)互余三角形”,故①正確;②∵,,∴,∴不是“準(zhǔn)互余三角形”,故②錯(cuò)誤;③設(shè)三角形的三個(gè)內(nèi)角分別為,且,∵三角形是“準(zhǔn)互余三角形”,∴或,∴,∴,∴“準(zhǔn)互余三角形”一定是鈍角三角形,故③正確;綜上所述,①③正確,故答案為:①③;(3)∠APB的度數(shù)是10°或20°或40°或110°;如圖①,當(dāng)2∠A+∠ABC=90°時(shí),△ABP是“準(zhǔn)直角三角形”,∵∠ABC=50°,∴∠A=20°,∴∠APB=110°;如圖②,當(dāng)∠A+2∠APB=90°時(shí),△ABP是“準(zhǔn)直角三角形”,∵∠ABC=50°,∴∠A+∠APB=50°,∴∠APB=40°;如圖③,當(dāng)2∠APB+∠ABC=90°時(shí),△ABP是“準(zhǔn)直角三角形”,∵∠ABC=50°,∴∠APB=20°;如圖④,當(dāng)2∠A+∠APB=90°時(shí),△ABP是“準(zhǔn)直角三角形”,∵∠ABC=50°,∴∠A+∠APB=50°,所以∠A=40°,所以∠APB=10°;綜上,∠APB的度數(shù)是10°或20°或40°或110°時(shí),是“準(zhǔn)互余三角形”.【點(diǎn)睛】本題是三角形綜合題,考查了三角形內(nèi)角和定理,三角形的外角的性質(zhì),解題關(guān)鍵是理解題意,根據(jù)三角形內(nèi)角和定理和三角形的外角的性質(zhì),結(jié)合新定義進(jìn)行求解.6.(1)①18°;②126°;③63°;(2)當(dāng)x=18、36、54時(shí),△ADB中有兩個(gè)相等的角.【分析】(1)運(yùn)用平行線的性質(zhì)以及角平分線的定義,可得∠ABO的度數(shù);根據(jù)∠ABO、∠BAD的度數(shù)解析:(1)①18°;②126°;③63°;(2)當(dāng)x=18、36、54時(shí),△ADB中有兩個(gè)相等的角.【分析】(1)運(yùn)用平行線的性質(zhì)以及角平分線的定義,可得∠ABO的度數(shù);根據(jù)∠ABO、∠BAD的度數(shù)以及△AOB的內(nèi)角和,可得x的值;(2)根據(jù)三角形內(nèi)角和定理以及直角的度數(shù),可得x的值.【詳解】解:(1)如圖1,①∵∠MON=36°,OE平分∠MON,∴∠AOB=∠BON=18°,∵AB∥ON,∴∠ABO=18°;②當(dāng)∠BAD=∠ABD時(shí),∠BAD=18°,∵∠AOB+∠ABO+∠OAB=180°,∴∠OAC=180°-18°×3=126°;③當(dāng)∠BAD=∠BDA時(shí),∵∠ABO=18°,∴∠BAD=81°,∠AOB=18°,∵∠AOB+∠ABO+∠OAB=180°,∴∠OAC=180°-18°-18°-81°=63°,故答案為①18°;②126°;③63°;(2)如圖2,存在這樣的x的值,使得△ADB中有兩個(gè)相等的角.∵AB⊥OM,∠MON=36°,OE平分∠MON,∴∠AOB=18°,∠ABO=72°,若∠BAD=∠ABD=72°,則∠OAC=90°-72°=18°;若∠BAD=∠BDA=(180°-72°)÷2=54°,則∠OAC=90°-54°=36°;若∠ADB=∠ABD=72°,則∠BAD=36°,故∠OAC=90°-36°=54°;綜上所述,當(dāng)x=18、36、54時(shí),△ADB中有兩個(gè)相等的角.【點(diǎn)睛】本題考查了三角形的內(nèi)角和定理和三角形的外角性質(zhì)的應(yīng)用,三角形的內(nèi)角和等于180°,三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角之和.利用角平分線的性質(zhì)求出∠ABO的度數(shù)是關(guān)鍵,注意分類討論思想的運(yùn)用.7.(1)(i)見解析;(ii),理由見解析;(2)【分析】(1)(i)根據(jù)平分可以得到,再根據(jù),,即可得到答案;(ii)設(shè),根據(jù),,即可求解;(2)根據(jù)∠PDO=∠A+∠DBA,∠A+∠ABC解析:(1)(i)見解析;(ii),理由見解析;(2)【分析】(1)(i)根據(jù)平分可以得到,再根據(jù),,即可得到答案;(ii)設(shè),根據(jù),,即可求解;(2)根據(jù)∠PDO=∠A+∠DBA,∠A+∠ABC=90°,∠ABC=∠CPG,利用角平分線的性質(zhì),即可得到.【詳解】解:(1)(i)∵平分,∴,∵,∴,∵,∴,∴,∴,∵,∴.(ii).設(shè),∴.∵,∴,又∵∴∴,∴.(2),理由如下:∵∠ACB=90°∴∠PCB=90°,∠A+∠ABC=90°∵PQ⊥AB∴∠PQB=∠PCB=90°又∵∠CGP=∠BGQ∴∠ABC=∠CPG∵∠PDO=∠A+∠DBA,BD是∠ABC的角平分線∴∵PF是∠APQ的角平分線∴∴∴∠POD=90°∴PF⊥BD.【點(diǎn)睛】本題主要考查了三角形內(nèi)角和定理,三角形外角的性質(zhì),對頂角的性質(zhì),平行線的判定,解題的關(guān)鍵在于能夠熟練掌握相關(guān)知識進(jìn)行求解.8.(1)135°;(2)不變,;(3)或【分析】(1)由角平分線的性質(zhì)分別求解∠CAB與∠CBA的大小,再通過三角形內(nèi)角和定理求值.(2)由三角形的外角定理及角平分線的性質(zhì)求出∠3+∠4=∠1+解析:(1)135°;(2)不變,;(3)或【分析】(1)由角平分線的性質(zhì)分別求解∠CAB與∠CBA的大小,再通過三角形內(nèi)角和定理求值.(2)由三角形的外角定理及角平分線的性質(zhì)求出∠3+∠4=∠1+∠2+α,∠4=∠2+∠D,再通過加減消元求出α與∠D的等量關(guān)系.(3)先通過角平分線的性質(zhì)求出∠FBD為90°,再分類討論有一個(gè)角是另一個(gè)角的3倍的情況求解.【詳解】解:(1)、分別是和的角平分線,,,.(2)的大小不發(fā)生變化,理由如下:如圖,平分,平分,平分,,,,是的外角,,即①,是的外角,,即②,由①②得,解得.(3)如圖,平分,平分,平分,,,,,是的外角,,.①當(dāng)時(shí),,,,.②當(dāng)時(shí),,.,不符合題意.③當(dāng)時(shí),,解得,,.④當(dāng)時(shí),,,解得,,,不符合題意.綜上所述,或.【點(diǎn)睛】本題考查三角形的內(nèi)角和定理與外角定理以及角平分線的性質(zhì),解題關(guān)鍵是熟練掌握三角形內(nèi)角和與外角定理,通過分類討論求解.9.(1)不變,135°;(2)①90°;②60°或45°【分析】(1)根據(jù)直線MN與直線PQ垂直相交于O可知∠AOB=90°,再由AC、BC分別是∠BAO和∠ABO角的平分線得出∠BAC=∠OAB解析:(1)不變,135°;(2)①90°;②60°或45°【分析】(1)根據(jù)直線MN與直線PQ垂直相交于O可知∠AOB=90°,再由AC、BC分別是∠BAO和∠ABO角的平分線得出∠BAC=∠OAB,∠ABC=∠ABO,由三角形內(nèi)角和定理即可得出結(jié)論;(2)①由∠BAO與∠BOQ的角平分線相交于E可知∠EAO=∠BAO,∠EOQ=∠BOQ,進(jìn)而得出∠E的度數(shù),由AE、AF分別是∠BAO和∠OAD的角平分線可知∠EAF=90°;②在△AEF中,由一個(gè)角是另一個(gè)角的3倍分四種情況進(jìn)行分類討論.【詳解】解:(1)∠ACB的大小不變,∵直線MN與直線PQ垂直相交于O,∴∠AOB=90°,∴∠OAB+∠OBA=90°,∵AC、BC分別是∠BAO和∠ABO角的平分線,∴∠BAC=∠OAB,∠ABC=∠ABO,∴∠BAC+∠ABC=(∠OAB+∠ABO)=×90°=45°,∴∠ACB=135°;(2)①∵AE、AF分別是∠BAO和∠OAD的角平分線,∴∠EAO=∠BAO,∠FAO=∠DAO,∴∠EAF=(∠BAO+∠DAO)=×180°=90°.故答案為:90;②∵∠BAO與∠BOQ的角平分線相交于E,∴∠EAO=∠BAO,∠EOQ=∠BOQ,∴∠E=∠EOQ-∠EAO=(∠BOQ-∠BAO)=∠ABO,即∠ABO=2∠E,在△AEF中,∵有一個(gè)角是另一個(gè)角的3倍,故分四種情況討論:①∠EAF=3∠E,∠E=30°,則∠ABO=60°;②∠EAF=3∠F,∠E=60°,∠ABO=120°(舍去);③∠F=3∠E,∠E=22.5°,∠ABO=45°;④∠E=3∠F,∠E=67.5°,∠ABO=135°(舍去).∴∠ABO為60°或45°.【點(diǎn)睛】本題考查的是三角形內(nèi)角和定理、三角形外角性質(zhì)以及角平分線的定義的運(yùn)用,熟知三角形內(nèi)角和是180°是解答此題的關(guān)鍵.10.【探究1】∠2=∠ACB,90o-∠A;【探究2】∠BOC=90°﹣∠A,理由見解析;【應(yīng)用】22.5°;【拓展】45°或36°.【分析】【探究1】根據(jù)角平分線的定義可得∠1=∠ABC,∠2=∠解析:【探究1】∠2=∠ACB,90o-∠A;【探究2】∠BOC=90°﹣∠A,理由見解析;【應(yīng)用】22.5°;【拓展】45°或36°.【分析】【探究1】根據(jù)角平分線的定義可得∠1=∠ABC,∠2=∠ACB,根據(jù)三角形的內(nèi)角和定理可得∠1+∠2=90o-∠A,再根據(jù)三角形的內(nèi)角和定理即可得出結(jié)論;【探究2】如圖2,由三角形的外角性質(zhì)和角平分線的定義可得∠OBC=(∠A+∠ACB),∠OCB=(∠A+∠ABC),然后再根據(jù)三角形的內(nèi)角和定理即可得出結(jié)論;【應(yīng)用】延長AC與BD,設(shè)交點(diǎn)為G,如圖5,由【探究1】的結(jié)論可得∠G的度數(shù),于是可得∠GCD+∠GDC的度數(shù),然后根據(jù)角平分線的定義和角的和差
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- GB/T 46631-2025農(nóng)業(yè)拖拉機(jī)機(jī)具用液壓壓力
- GB/T 46635.1-2025滑動(dòng)軸承使用實(shí)際連桿汽車發(fā)動(dòng)機(jī)軸承試驗(yàn)臺第1部分:試驗(yàn)臺
- 50hz軌道電路的日常維護(hù)和故障處理
- 2025年高職(食品質(zhì)量與安全)食品質(zhì)量管理測試題及答案
- 2025年大學(xué)(眼視光學(xué))眼科學(xué)基礎(chǔ)真題及答案
- 2025年高職第一學(xué)年(紡織工程技術(shù))紡織設(shè)備維護(hù)基礎(chǔ)綜合測試試題及答案
- 2025年大學(xué)核安全工程(核安全方案)模擬試題
- 大學(xué)(臨床醫(yī)學(xué))內(nèi)科常見病診斷2026年階段測試題及答案
- 2025年大學(xué)水利工程與管理(水利工程施工)試題及答案
- 2025年大學(xué)咖啡拉花(技法訓(xùn)練)試題及答案
- 2025年下半年上海當(dāng)代藝術(shù)博物館公開招聘工作人員(第二批)參考筆試試題及答案解析
- 2026國家糧食和物資儲(chǔ)備局垂直管理局事業(yè)單位招聘應(yīng)屆畢業(yè)生27人考試歷年真題匯編附答案解析
- 癌性疼痛的中醫(yī)治療
- 大學(xué)生就業(yè)面試培訓(xùn)
- 2026年旅行社經(jīng)營管理(旅行社管理)考題及答案
- 2026年北京第一次普通高中學(xué)業(yè)水平合格性考試化學(xué)仿真模擬卷01(考試版)
- 東北三省精準(zhǔn)教學(xué)聯(lián)盟2025年12月高三聯(lián)考語文
- 物業(yè)服務(wù)協(xié)議轉(zhuǎn)讓合同
- 2025-2026學(xué)年上學(xué)期初中生物北師大新版八年級期末必刷??碱}之性狀遺傳有一定的規(guī)律性
- 2025年鎮(zhèn)江市輔警協(xié)警筆試筆試真題(附答案)
- 北京市西城區(qū)2024-2025學(xué)年四年級上學(xué)期期末英語試題
評論
0/150
提交評論