版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2026屆武威市重點中學高二上數(shù)學期末教學質(zhì)量檢測模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若函數(shù),(其中,)的最小正周期是,且,則()A. B.C. D.2.過橢圓的左焦點作弦,則最短弦的長為()A. B.2C. D.43.已知A為拋物線C:y2=2px(p>0)上一點,點A到C的焦點的距離為12,到y(tǒng)軸的距離為9,則p=()A.2 B.3C.6 D.94.已知,,,則的大小關(guān)系是()A. B.C. D.5.連續(xù)拋擲一枚硬幣3次,觀察正面出現(xiàn)的情況,事件“至少2次出現(xiàn)正面”的對立事件是()A.只有2次出現(xiàn)反面 B.至多2次出現(xiàn)正面C.有2次或3次出現(xiàn)正面 D.有2次或3次出現(xiàn)反面6.已知空間三點,,在一條直線上,則實數(shù)的值是()A.2 B.4C.-4 D.-27.設,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分又不必要條件8.已知等比數(shù)列的前項和為,首項為,公比為,則()A. B.C. D.9.過點(1,0)且與直線x-2y-2=0平行的直線方程是()A.x-2y-1=0 B.x-2y+1=0C.2x+y-2=0 D.x+2y-1=010.空間四點共面,但任意三點不共線,若為該平面外一點且,則實數(shù)的值為()A. B.C. D.11.已知橢圓的右焦點為,則正數(shù)的值是()A.3 B.4C.9 D.2112.已知雙曲線C:(,)的一條漸近線被圓所截得的弦長為2,的C的離心率為()A. B.C.2 D.二、填空題:本題共4小題,每小題5分,共20分。13.展開式中,各項系數(shù)之和為1,則實數(shù)_______.(用數(shù)字填寫答案)14.命題“若,則”的否命題為______15.設等差數(shù)列的前項和為,若,,則______16.若展開式的二項式系數(shù)之和是64,則展開式中的常數(shù)項的值是__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓的左、右焦點分別為,若焦距為4,點P是橢圓上與左、右頂點不重合的點,且的面積最大值.(1)求橢圓的方程;(2)過點的直線交橢圓于點、,且滿足(為坐標原點),求直線的方程.18.(12分)已知圓:與x軸負半軸交于點A,過A的直線交拋物線于B,C兩點,且.(1)證明:點C的橫坐標為定值;(2)若點C在圓內(nèi),且過點C與垂直的直線與圓交于D,E兩點,求四邊形ADBE的面積的最大值.19.(12分)已知函數(shù).(1)求曲線在處的切線方程;(2)求曲線過點的切線方程.20.(12分)設點是拋物線上異于原點O的一點,過點P作斜率為、的兩條直線分別交于、兩點(P、A、B三點互不相同)(1)已知點,求的最小值;(2)若,直線AB的斜率是,求的值;(3)若,當時,B點的縱坐標的取值范圍21.(12分)已知定點,動點滿足,設點的軌跡為.(1)求軌跡的方程;(2)若點分別是圓和軌跡上的點,求兩點間的最大距離.22.(10分)已知數(shù)列的前n項和,(1)求數(shù)列的通項公式;(2)設,,求數(shù)列的前n項和
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】利用余弦型函數(shù)的周期公式可求得的值,由結(jié)合的取值范圍可求得的值.【詳解】由已知可得,且,因此,.故選:B.2、A【解析】求出橢圓的通徑,即可得到結(jié)果【詳解】過橢圓的左焦點作弦,則最短弦的長為橢圓的通徑:故選:A3、C【解析】利用拋物線的定義建立方程即可得到答案.【詳解】設拋物線的焦點為F,由拋物線的定義知,即,解得.故選:C.【點晴】本題主要考查利用拋物線的定義計算焦半徑,考查學生轉(zhuǎn)化與化歸思想,是一道容易題.4、B【解析】利用微積分基本定理計算,利用積分的幾何意義求扇形面積得到,然后比較大小.【詳解】,表示以原點為圓心,半徑為2的圓在第二象限的部分的面積,∴;,∵e=2.71828…>2.7,,,,故選:5、D【解析】根據(jù)對立事件的定義即可得出結(jié)果.【詳解】對立事件是指事件A和事件B必有一件發(fā)生,連續(xù)拋擲一枚均勻硬幣3次,“至少2次出現(xiàn)正面”即有2次或3次出現(xiàn)正面,對立事件為0次或1次出現(xiàn)正面,即“有2次或3次出現(xiàn)反面”故選:D6、C【解析】根據(jù)三點在一條直線上,利用向量共線原理,解出實數(shù)的值.【詳解】解:因為空間三點,,在一條直線上,所以,故.所以.故選:C.【點睛】本題主要考查向量共線原理,屬于基礎(chǔ)題.7、A【解析】由三角函數(shù)的單調(diào)性直接判斷是否能推出,反過來判斷時,是否能推出.【詳解】當時,利用正弦函數(shù)的單調(diào)性知;當時,或.綜上可知“”是“”的充分不必要條件.故選:A【點睛】本題考查判斷充分必要條件,三角函數(shù)性質(zhì),意在考查基本判斷方法,屬于基礎(chǔ)題型.8、D【解析】根據(jù)求解即可.【詳解】因為等比數(shù)列,,所以.故選:D9、A【解析】設出直線方程,利用待定系數(shù)法得到結(jié)果.【詳解】設與直線平行的直線方程為,將點代入直線方程可得,解得則所求直線方程為.故A正確【點睛】本題主要考查兩直線的平行問題,屬容易題.兩直線平行傾斜角相等,所以斜率相等或均不存在.所以與直線平行的直線方程可設為10、A【解析】由空間向量共面定理構(gòu)造方程求得結(jié)果.【詳解】空間四點共面,但任意三點不共線,,解得:.故選:A.11、A【解析】由直接可得.【詳解】由題知,所以,因為,所以.故選:A12、C【解析】由雙曲線的方程可得漸近線的直線方程,根據(jù)直線和圓相交弦長可得圓心到直線的距離,進而可得,結(jié)合,可得離心率.【詳解】雙曲線的一條漸近線方程為,即,被圓所截得的弦長為2,所以圓心到直線的距離為,,解得,故選:C【點睛】本題考查了雙曲線的漸近線和離心率、直線和圓的相交弦、點到直線距離等基本知識,考查了運算求解能力和邏輯推理能力,轉(zhuǎn)化的數(shù)學思想,屬于一般題目.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】通過給二項式中的賦值1求出展開式的各項系數(shù)和,即可求出詳解】解:令,得各項系數(shù)之和為,解得故答案為:14、若,則【解析】否命題是對命題的條件和結(jié)論同時否定,同時否定和即可.命題“若,則”的否命題為:若,則考點:四種命題.15、77【解析】依題意利用等差中項求得,進而求得.【詳解】依題意可得,則,故故答案為:77.16、【解析】首先利用展開式的二項式系數(shù)和是求出,然后即可求出二項式的常數(shù)項.【詳解】由題知展開式的二項式系數(shù)之和是,故有,可得,知當時有.故展開式中的常數(shù)項為.故答案為:.【點睛】本題考查了利用二項式的系數(shù)和求參數(shù),求二項式的常數(shù)項,屬于基礎(chǔ)題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)或【解析】(1)根據(jù)焦距求出,利用面積最大值,得到求出,從而得到,求出橢圓方程;(2)分直線斜率存在和斜率不存在,結(jié)合題干條件得到,進而求出直線方程.【小問1詳解】∵∴,又的面積最大值,則,所以,從而,,故橢圓的方程為:;【小問2詳解】①當直線的斜率存在時,設,代入③整理得,設、,則,所以,點到直線的距離因為,即,又由,得,所以,.而,,即,解得:,此時;②當直線的斜率不存在時,,直線交橢圓于點、.也有,經(jīng)檢驗,上述直線均滿足,綜上:直線的方程為或.【點睛】圓錐曲線中,有關(guān)向量的題目,要結(jié)合條件選擇不同的方法,一般思路有轉(zhuǎn)化為三角形面積,或者線段的比,或者由向量得到共線等.18、(1)證明見解析(2)【解析】(1)設直線方程,與拋物線方程聯(lián)立,設,,結(jié)合,得到,結(jié)合根與系數(shù)的關(guān)系,即可解得答案;(2)根據(jù)(1)所設,表示出弦長,再求出,進而表示出四邊形ADBE的面積,據(jù)此求其最大值,【小問1詳解】由題意知點的坐標為,易知直線的斜率存在且不為零,設直線:,,,聯(lián)立,得,則,即,由韋達定理得,由,即,得,即,代入,得或,又拋物線開口向右,,所以點的橫坐標為定值.【小問2詳解】由(1)知點的坐標為,故,由(1)知點的坐標為,由點在圓內(nèi),得,解得,又,得的斜率,故的方程為,即,故圓心到直線的距離為,由垂徑定理得,故,(),當且僅當時,有最大值,所以四邊形的面積的最大值為.19、(1);(2).【解析】(1)首先求導函數(shù),計算,接著根據(jù)導數(shù)的幾何意義確定切線的斜率,最后根據(jù)點斜式寫出直線方程即可;(2)因為點不在曲線上,所以設切點為,根據(jù)導數(shù)的幾何意義寫出切線的方程,代入點求解,最后寫出切線方程即可.【詳解】(1).,.所以曲線在處的切線方程為,即(2)設切點為,則曲線在點處的切線方程為,代入點得,,.所以曲線過點的切線方程為,即.20、(1);(2)3;(3);【解析】(1)根據(jù)兩點之間的距離公式,結(jié)合點坐標滿足拋物線,構(gòu)造關(guān)于的函數(shù)關(guān)系,求其最值即可;(2)根據(jù)題意,求得點的坐標,設出的直線方程,聯(lián)立拋物線方程,利用韋達定理求得點坐標,同理求得點坐標,再利用斜率計算公式求得即可;(3)根據(jù)題意,求得點的坐標,利用坐標轉(zhuǎn)化,求得關(guān)于的一元二次方程,利用其有兩個不相等的實數(shù)根,即可求得的取值范圍.【小問1詳解】因為點在拋物線上,故可得,又,當且僅當時,取得最小值.故的最小值為.【小問2詳解】當時,故可得,即點的坐標為;則的直線方程為:,聯(lián)立拋物線方程:,可得:,故可得,解得:,又故可得同理可得:,又的斜率,即.故為定值.【小問3詳解】當時,可得,此時,因為兩點在拋物線上,故可得,,因為,故可得,整理得:,,因為三點不同,故可得,則,即,,此方程可以理解為關(guān)于的一元二次方程,因為,故該方程有兩個不相等的實數(shù)根,,即,故,則,解得或.故點縱坐標的取值范圍為.【點睛】本題考察直線與拋物線相交時范圍問題,定值問題,解決問題的關(guān)鍵是合理且充分的利用韋達定理,本題計算量較大,屬綜合困難題.21、(1)(2)【解析】(1)設動點,根據(jù)條件列出方程,化簡求解即可;(2)設,求出圓心到軌跡上點的距離,配方求最值即可得解.【小問1詳解】設動點,則,,,又,∴,化簡得,即
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 上消化道出血急救護理標準化流程與止血干預實踐指南
- (新教材)2026年滬科版八年級下冊數(shù)學 18.2 勾股定理的逆定理 課件
- 風疹全程護理管理
- 2025年辦公樓智能安防監(jiān)控安裝合同協(xié)議
- 貨物裝卸作業(yè)安全操作規(guī)程
- 傳染性單核細胞增多癥課件
- 基于多模態(tài)數(shù)據(jù)的信用評分模型
- 2025年智能傳感器技術(shù)發(fā)展報告
- 土壤酸化治理
- 2026 年中職局域網(wǎng)管理(局域網(wǎng)配置)試題及答案
- 2025年沈陽華晨專用車有限公司公開招聘筆試歷年參考題庫附帶答案詳解
- 2026(蘇教版)數(shù)學五上期末復習大全(知識梳理+易錯題+壓軸題+模擬卷)
- 2024廣東廣州市海珠區(qū)琶洲街道招聘雇員(協(xié)管員)5人 備考題庫帶答案解析
- 蓄電池安全管理課件
- 建筑業(yè)項目經(jīng)理目標達成度考核表
- 2025廣東肇慶四會市建筑安裝工程有限公司招聘工作人員考試參考題庫帶答案解析
- 第五單元國樂飄香(一)《二泉映月》課件人音版(簡譜)初中音樂八年級上冊
- 簡約物業(yè)交接班管理制度
- 收購摩托駕校協(xié)議書
- 2025年浙江省中考數(shù)學試卷(含答案)
- 汽車行業(yè)可信數(shù)據(jù)空間方案
評論
0/150
提交評論