2026屆河南省濮陽市華龍區(qū)濮陽一中高二上數(shù)學(xué)期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第1頁
2026屆河南省濮陽市華龍區(qū)濮陽一中高二上數(shù)學(xué)期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第2頁
2026屆河南省濮陽市華龍區(qū)濮陽一中高二上數(shù)學(xué)期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第3頁
2026屆河南省濮陽市華龍區(qū)濮陽一中高二上數(shù)學(xué)期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第4頁
2026屆河南省濮陽市華龍區(qū)濮陽一中高二上數(shù)學(xué)期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2026屆河南省濮陽市華龍區(qū)濮陽一中高二上數(shù)學(xué)期末質(zhì)量跟蹤監(jiān)視模擬試題注意事項(xiàng)1.考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回.2.答題前,請(qǐng)務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請(qǐng)認(rèn)真核對(duì)監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對(duì)應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請(qǐng)用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號(hào)等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.圓與的公共弦長為()A. B.C. D.2.若正方體ABCD-A1B1C1D1的棱長為1,則直線A1C1到平面ACD1的距離為()A.1 B.C. D.3.已知數(shù)列的通項(xiàng)公式為.若數(shù)列的前n項(xiàng)和為,則取得最大值時(shí)n的值為()A.2 B.3C.4 D.54.小王與小張二人參加某射擊比賽預(yù)賽的五次測試成績?nèi)缦卤硭?,設(shè)小王與小張成績的樣本平均數(shù)分別為和,方差分別為和,則()第一次第二次第三次第四次第五次小王得分(環(huán))910579小張得分(環(huán))67557A. B.C. D.5.曲線y=x3+11在點(diǎn)P(1,12)處的切線與y軸交點(diǎn)的縱坐標(biāo)是()A.﹣9 B.﹣3C.9 D.156.在數(shù)列中,,則此數(shù)列最大項(xiàng)的值是()A.102 B.C. D.1087.已知等比數(shù)列的前n項(xiàng)和為,,,則()A. B.C. D.8.雙曲線的漸近線的斜率是()A.1 B.C. D.9.直線經(jīng)過兩點(diǎn),那么其斜率為()A. B.C. D.10.已知點(diǎn)為雙曲線的左頂點(diǎn),點(diǎn)和點(diǎn)在雙曲線的右分支上,是等邊三角形,則的面積是A. B.C. D.11.已知雙曲線的右焦點(diǎn)為,以為圓心,以為半徑的圓與雙曲線的一條漸近線交于,兩點(diǎn),若(為坐標(biāo)原點(diǎn)),則雙曲線的離心率為().A. B.C. D.12.若關(guān)于x的方程有解,則實(shí)數(shù)a的取值范圍為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若恒成立,則______.14.達(dá)?芬奇認(rèn)為:和音樂一樣,數(shù)學(xué)和幾何“包含了宇宙的一切”,從年輕時(shí)起,他就本能地把這些主題運(yùn)用在作品中,布達(dá)佩斯的伊帕姆維澤蒂博物館收藏的達(dá)?芬奇方磚,在正六邊形上畫了具有視覺效果的正方體圖案(如圖1),把三片這樣的達(dá)?芬奇方磚形成圖2的組合,這個(gè)組合表達(dá)了圖3所示的幾何體.若圖3中每個(gè)正方體的邊長為1,則點(diǎn)到直線的距離是__________.15.設(shè)O為坐標(biāo)原點(diǎn),F(xiàn)為雙曲線的焦點(diǎn),過F的直線l與C的兩條漸近線分別交于A,B兩點(diǎn).若,且的內(nèi)切圓的半徑為,則C的離心率為____________16.如圖,已知正方形邊長為,長方形中,,平面與平面互相垂直,是線段的中點(diǎn),則異面直線與所成角的余弦值為______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知空間內(nèi)不重合的四點(diǎn)A,B,C,D的坐標(biāo)分別為,,,,且(1)求k,t的值;(2)求點(diǎn)B到直線CD的距離18.(12分)已知函數(shù).(1)求函數(shù)f(x)的單調(diào)區(qū)間;(2)若f(x)≥0對(duì)定義域內(nèi)的任意x恒成立,求實(shí)數(shù)a的取值范圍.19.(12分)已知,.(1)若,為假命題,求的取值范圍;(2)若是的必要不充分條件,求實(shí)數(shù)的取值范圍.20.(12分)為了了解高二段1000名學(xué)生一周課外活動(dòng)情況,隨機(jī)抽取了若干學(xué)生的一周課外活動(dòng)時(shí)間,時(shí)間全部介于10分鐘與110分鐘之間,將課外活動(dòng)時(shí)間按如下方式分成五組:第一組,第二組,…,第五組.按上述分組方法得到的頻率分布直方圖如圖所示,已知圖中從左到右前3個(gè)組的頻率之比為3∶8∶19,且第二組的頻數(shù)為8(1)求第一組數(shù)據(jù)的頻率并計(jì)算調(diào)查中隨機(jī)抽取了多少名學(xué)生的一周課外活動(dòng)時(shí)間;(2)求這組數(shù)據(jù)的平均數(shù)21.(12分)如圖,四邊形是某半圓柱的軸截面(過上下底面圓心連線的截面),線段是該半圓柱的一條母線,點(diǎn)為線的中點(diǎn)(1)證明:;(2)若,且點(diǎn)到平面的距離為1,求線段的長22.(10分)已知橢圓的左、右焦點(diǎn)分別為、,離心率,且過點(diǎn)(1)求橢圓C的方程;(2)已知過的直線l交橢圓C于A、B兩點(diǎn),試探究在平面內(nèi)是否存在定點(diǎn)Q,使得是一個(gè)確定的常數(shù)?若存在,求出點(diǎn)Q的坐標(biāo);若不存在,說明理由

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】已知兩圓方程,可先讓兩圓方程作差,得到其公共弦的方程,然后再計(jì)算圓心到直線的距離,再結(jié)合勾股定理即可完成弦長的求解.【詳解】已知圓,圓,兩圓方程作差,得到其公共弦的方程為::,而圓心到直線的距離為,圓的半徑為,所以,所以.故選:D.2、B【解析】先證明點(diǎn)A1到平面ACD1的距離即為直線A1C1到平面ACD1的距離,再建立空間直角坐標(biāo)系,利用向量法求解.【詳解】因?yàn)槠矫嫫矫?,所以A1C1//平面ACD1,則點(diǎn)A1到平面ACD1的距離即為直線A1C1到平面ACD1的距離.建立如圖所示的空間直角坐標(biāo)系,易知=(0,0,1),由題得平面,所以平面,所以,同理,因?yàn)槠矫?,所以平面,所以是平面一個(gè)法向量,所以平面ACD1的一個(gè)法向量為=(1,1,1),故所求的距離為.故選:B【點(diǎn)睛】方法點(diǎn)睛:求點(diǎn)到平面的距離常用的方法有:(1)幾何法(找作證指求);(2)向量法;(3)等體積法.要根據(jù)已知條件靈活選擇方法求解.3、C【解析】根據(jù)單調(diào)性分析出數(shù)列的正數(shù)項(xiàng)有哪些即可求解.【詳解】由條件有,當(dāng)時(shí),,即;當(dāng)時(shí),,即.即,所以取得最大值時(shí)n的值為.故選:C4、C【解析】根據(jù)圖表數(shù)據(jù)可以看出小王和小張的平均成績和成績波動(dòng)情況.【詳解】解:從圖表中可以看出小王每次的成績均不低于小張,但是小王成績波動(dòng)比較大,故設(shè)小王與小張成績的樣本平均數(shù)分別為和,方差分別為和.可知故選:C5、C【解析】y′=3x2,則y′|x=1=3,所以曲線在P點(diǎn)處的切線方程為y-12=3(x-1)即y=3x+9,它在y軸上的截距為9.6、D【解析】將將看作一個(gè)二次函數(shù),利用二次函數(shù)的性質(zhì)求解.【詳解】將看作一個(gè)二次函數(shù),其對(duì)稱軸為,開口向下,因?yàn)?,所以?dāng)時(shí),取得最大值,故選:D7、A【解析】由,可得等比數(shù)列公比q=2,利用等比數(shù)列求和公式和通項(xiàng)公式即可求.【詳解】設(shè)等比數(shù)列的公比為q,則,.故選:A.8、B【解析】由雙曲線的漸近線方程為:,化簡即可得到答案.【詳解】雙曲線的漸近線方程為:,即,漸近線的斜率是.故選:B9、B【解析】由兩點(diǎn)的斜率公式可得答案.【詳解】直線經(jīng)過兩點(diǎn),則故選:B10、C【解析】設(shè)點(diǎn)在軸上方,由是等邊三角形得直線斜率.又直線過點(diǎn),故方程為.代入雙曲線方程,得點(diǎn)的坐標(biāo)為.同理可得,點(diǎn)的坐標(biāo)為.故的面積為,選C.11、A【解析】設(shè)雙曲線的一條漸近線方程為,為的中點(diǎn),可得,由,可知為的三等分點(diǎn),用兩種方式表示,可得關(guān)于的方程組,結(jié)合即可得到雙曲線的離心率.【詳解】設(shè)雙曲線的一條漸近線方程為,為的中點(diǎn),可得,由到漸近線的距離為,所以,又,所以,因?yàn)?,所以,整理可得:,即,所以,可得,所以,所以雙曲線的離心率為,故選:A.12、C【解析】將方程有解,轉(zhuǎn)化為方程有解求解.【詳解】解:因?yàn)榉匠逃薪?,所以方程有解,因?yàn)?,?dāng)且僅當(dāng),即時(shí),等號(hào)成立,所以實(shí)數(shù)a的取值范圍為,故選:C二、填空題:本題共4小題,每小題5分,共20分。13、1【解析】利用導(dǎo)數(shù)研究的最小值為,再構(gòu)造研究其最值,即可確定參數(shù)a的值.【詳解】令,則且,當(dāng)時(shí),遞減;當(dāng)時(shí),遞增;所以,即在上恒成立,令,則,當(dāng)時(shí),遞增;當(dāng)時(shí),遞減;所以,綜上,.故答案為:114、【解析】根據(jù)題意,求得△的三條邊長,在三角形中求邊邊上的高線即可.【詳解】根據(jù)題意,延長交于點(diǎn),連接,如下所示:在△中,容易知:;同理,,滿足,設(shè)點(diǎn)到直線的距離為,由等面積法可知:,解得,即點(diǎn)到直線的距離是.故答案為:.15、##【解析】,作出漸近線圖像,由題可知的內(nèi)切圓圓心在x軸上,過內(nèi)心作OA和AB的垂線,可得幾何關(guān)系,據(jù)此即可求解.【詳解】雙曲線漸近線OA與OB如圖所示,OA與OB關(guān)于x軸對(duì)稱,設(shè)△OAB的內(nèi)切圓圓心為,則M在的平分線上,過點(diǎn)分別作于點(diǎn)于,由,則四邊形為正方形,由焦點(diǎn)到漸近線的距離為得,又,∴,且,∴,∴,則.故答案為:.16、【解析】建立如圖所示的空間直角坐標(biāo)系,求出,后可求異面直線所成角的余弦值.【詳解】長方形可得,因?yàn)槠矫媾c平面互相垂直,平面平面,平面,故平面,故可建立如圖所示的空間直角坐標(biāo)系,則,故,,故.故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1),(2)【解析】(1)由,可得存在唯一實(shí)數(shù),使得,列出方程組,解之即可得解;(2)設(shè)直線與所成的角為,求出,再根據(jù)點(diǎn)B到直線CD的距離為即可得解【小問1詳解】解:,,因?yàn)?,所以存在唯一?shí)數(shù),使得,所以,所以,解得,所以,;【小問2詳解】解:,則,設(shè)直線與所成的角為,則,所以點(diǎn)B到直線CD的距離為.18、(1)答案見解析(2)【解析】(1)求導(dǎo)數(shù),然后對(duì)進(jìn)行分類討論,利用導(dǎo)數(shù)的正負(fù),可得函數(shù)的單調(diào)區(qū)間;(2)利用(1)中函數(shù)的單調(diào)性,求得函數(shù)在處取得最小值,即可求實(shí)數(shù)的取值范圍.【小問1詳解】解:求導(dǎo)可得①時(shí),令可得,由于知;令,得∴函數(shù)在上單調(diào)遞減,在上單調(diào)遞增;②時(shí),令可得;令,得或,由于知或;∴函數(shù)在上單調(diào)遞減,在上單調(diào)遞增;③時(shí),,函數(shù)在上單調(diào)遞增;④時(shí),令可得;令,得或,由于知或∴函數(shù)在上單調(diào)遞減,在上單調(diào)遞增;【小問2詳解】由(1)時(shí),,(不符合,舍去)當(dāng)時(shí),在上單調(diào)遞減,在上單調(diào)遞增,故函數(shù)在處取得最小值,所以函數(shù)對(duì)定義域內(nèi)的任意x恒成立時(shí),只需要即可∴.綜上,.19、(1)(2)【解析】(1)分別求出命題、為真時(shí)參數(shù)的取值范圍,依題意、都為假命題,求出的取值范圍,即可得解;(2)依題意可得是的必要不充分條件,則真包含于,即可得到不等式組,解得即可;【小問1詳解】由,解得,即,由,可得,所以,當(dāng)時(shí),解得,即,因?yàn)闉榧倜},則、都為假命題,當(dāng)為假命題時(shí):或當(dāng)為假命題時(shí):或故當(dāng)、都為假命題,或綜上可得;【小問2詳解】因?yàn)槭堑谋匾怀浞謼l件,由(1)可知,,所以真包含于,所以,解得,即20、(1)0.06,50名(2)64(分鐘)【解析】(1)利用頻率和為1可求解頻率,再利用頻率,頻數(shù),總數(shù)之間的關(guān)系可求解學(xué)生人數(shù);(2)平均數(shù):頻率分布直方圖中每個(gè)小長方形的中點(diǎn)乘以對(duì)應(yīng)的長方形面積之和;【小問1詳解】設(shè)圖中從左到右前3個(gè)組的頻率分別為3x,8x,19x依題意,得所以.所以第一組數(shù)據(jù)的頻率為,設(shè)調(diào)查中隨機(jī)抽取了n名學(xué)生的課外活動(dòng)時(shí)間,則,得,所以調(diào)查中隨機(jī)抽取了50名學(xué)生的課外活動(dòng)時(shí)間小問2詳解】由題意,這組數(shù)據(jù)的平均數(shù)(分鐘)21、(1)證明見解析;(2).【解析】(1)先證明,,利用判定定理證明平面,從而得到;(2)設(shè),利用等體積法,由由,解出a.【詳解】(1)證明:由題意可知平面,平面∴∵所對(duì)為半圓直徑∴∴和是平面內(nèi)兩條相交直線∴平面平面∴(2)設(shè),因?yàn)椋宜?,設(shè),在等腰直角三角形中,取BC的中點(diǎn)E,連結(jié)AE,則,取BC1的中點(diǎn)為P,連結(jié)DP,∵,∴,又為的中點(diǎn),∴,∴,即的高為∴,∵,且∴平面,∵平面,且即到平面的距離為1,而由,即解得:,即.【點(diǎn)睛】立體幾何解答題(1)第一問一般是幾何關(guān)系的證明,用判定定理;(2)第二問是計(jì)算,求角或求距離(求體積通常需要先求距離).如果求體積,常用的方法有:(1)直接法;(2)等體積法;(3)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論