2026屆山東省鄒平雙語學(xué)校三區(qū)數(shù)學(xué)高三第一學(xué)期期末考試模擬試題含解析_第1頁
2026屆山東省鄒平雙語學(xué)校三區(qū)數(shù)學(xué)高三第一學(xué)期期末考試模擬試題含解析_第2頁
2026屆山東省鄒平雙語學(xué)校三區(qū)數(shù)學(xué)高三第一學(xué)期期末考試模擬試題含解析_第3頁
2026屆山東省鄒平雙語學(xué)校三區(qū)數(shù)學(xué)高三第一學(xué)期期末考試模擬試題含解析_第4頁
2026屆山東省鄒平雙語學(xué)校三區(qū)數(shù)學(xué)高三第一學(xué)期期末考試模擬試題含解析_第5頁
已閱讀5頁,還剩16頁未讀 繼續(xù)免費閱讀

付費下載

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2026屆山東省鄒平雙語學(xué)校三區(qū)數(shù)學(xué)高三第一學(xué)期期末考試模擬試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知復(fù)數(shù)z滿足,則z的虛部為()A. B.i C.–1 D.12.已知數(shù)列{an}滿足a1=3,且aA.22n-1+1 B.22n-1-13.已知數(shù)列an滿足:an=2,n≤5a1A.16 B.17 C.18 D.194.已知向量,滿足,在上投影為,則的最小值為()A. B. C. D.5.某四棱錐的三視圖如圖所示,則該四棱錐的表面積為()A.8 B. C. D.6.已知復(fù)數(shù)z=2i1-i,則A.第一象限 B.第二象限 C.第三象限 D.第四象限7.已知點,點在曲線上運動,點為拋物線的焦點,則的最小值為()A. B. C. D.48.已知數(shù)列滿足:)若正整數(shù)使得成立,則()A.16 B.17 C.18 D.199.設(shè)點,,不共線,則“”是“”()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分又不必要條件10.已知,則下列不等式正確的是()A. B.C. D.11.已知,若方程有唯一解,則實數(shù)的取值范圍是()A. B.C. D.12.若滿足約束條件則的最大值為()A.10 B.8 C.5 D.3二、填空題:本題共4小題,每小題5分,共20分。13.已知四棱錐,底面四邊形為正方形,,四棱錐的體積為,在該四棱錐內(nèi)放置一球,則球體積的最大值為_________.14.邊長為2的菱形中,與交于點O,E是線段的中點,的延長線與相交于點F,若,則______.15.已知F為雙曲線的右焦點,過F作C的漸近線的垂線FD,D為垂足,且(O為坐標(biāo)原點),則C的離心率為________.16.已知集合U={1,3,5,9},A={1,3,9},B={1,9},則?U(A∪B)=________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在中,角的對邊分別為,且滿足,線段的中點為.(Ⅰ)求角的大小;(Ⅱ)已知,求的大小.18.(12分)某房地產(chǎn)開發(fā)商在其開發(fā)的某小區(qū)前修建了一個弓形景觀湖.如圖,該弓形所在的圓是以為直徑的圓,且米,景觀湖邊界與平行且它們間的距離為米.開發(fā)商計劃從點出發(fā)建一座景觀橋(假定建成的景觀橋的橋面與地面和水面均平行),橋面在湖面上的部分記作.設(shè).(1)用表示線段并確定的范圍;(2)為了使小區(qū)居民可以充分地欣賞湖景,所以要將的長度設(shè)計到最長,求的最大值.19.(12分)已知數(shù)列的各項均為正數(shù),且滿足.(1)求,及的通項公式;(2)求數(shù)列的前項和.20.(12分)在平面直角坐標(biāo)系xOy中,曲線l的參數(shù)方程為(為參數(shù)),以原點O為極點,x軸非負(fù)半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為4sin.(1)求曲線C的普通方程;(2)求曲線l和曲線C的公共點的極坐標(biāo).21.(12分)如圖所示,在三棱錐中,,,,點為中點.(1)求證:平面平面;(2)若點為中點,求平面與平面所成銳二面角的余弦值.22.(10分)在四棱椎中,四邊形為菱形,,,,,,分別為,中點..(1)求證:;(2)求平面與平面所成銳二面角的余弦值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】

利用復(fù)數(shù)的四則運算可得,即可得答案.【詳解】∵,∴,∴,∴復(fù)數(shù)的虛部為.故選:C.【點睛】本題考查復(fù)數(shù)的四則運算、虛部概念,考查運算求解能力,屬于基礎(chǔ)題.2、D【解析】試題分析:因為an+1=4an+3,所以an+1+1=4(an+1),即an+1+1an+1考點:數(shù)列的通項公式.3、B【解析】

由題意可得a1=a2=a3=a4=a5=2,累加法求得a62+【詳解】解:an即a1=an?6時,a1a1兩式相除可得1+a則an2=由a6a7…,ak2=可得aa1且a1正整數(shù)k(k?5)時,要使得a1則ak+1則k=17,故選:B.【點睛】本題考查與遞推數(shù)列相關(guān)的方程的整數(shù)解的求法,注意將題設(shè)中的遞推關(guān)系變形得到新的遞推關(guān)系,從而可簡化與數(shù)列相關(guān)的方程,本題屬于難題.4、B【解析】

根據(jù)在上投影為,以及,可得;再對所求模長進(jìn)行平方運算,可將問題轉(zhuǎn)化為模長和夾角運算,代入即可求得.【詳解】在上投影為,即又本題正確選項:【點睛】本題考查向量模長的運算,對于含加減法運算的向量模長的求解,通常先求解模長的平方,再開平方求得結(jié)果;解題關(guān)鍵是需要通過夾角取值范圍的分析,得到的最小值.5、D【解析】

根據(jù)三視圖還原幾何體為四棱錐,即可求出幾何體的表面積.【詳解】由三視圖知幾何體是四棱錐,如圖,且四棱錐的一條側(cè)棱與底面垂直,四棱錐的底面是正方形,邊長為2,棱錐的高為2,所以,故選:【點睛】本題主要考查了由三視圖還原幾何體,棱錐表面積的計算,考查了學(xué)生的運算能力,屬于中檔題.6、C【解析】分析:根據(jù)復(fù)數(shù)的運算,求得復(fù)數(shù)z,再利用復(fù)數(shù)的表示,即可得到復(fù)數(shù)對應(yīng)的點,得到答案.詳解:由題意,復(fù)數(shù)z=2i1-i所以復(fù)數(shù)z在復(fù)平面內(nèi)對應(yīng)的點的坐標(biāo)為(-1,-1),位于復(fù)平面內(nèi)的第三象限,故選C.點睛:本題主要考查了復(fù)數(shù)的四則運算及復(fù)數(shù)的表示,其中根據(jù)復(fù)數(shù)的四則運算求解復(fù)數(shù)z是解答的關(guān)鍵,著重考查了推理與運算能力.7、D【解析】

如圖所示:過點作垂直準(zhǔn)線于,交軸于,則,設(shè),,則,利用均值不等式得到答案.【詳解】如圖所示:過點作垂直準(zhǔn)線于,交軸于,則,設(shè),,則,當(dāng),即時等號成立.故選:.【點睛】本題考查了拋物線中距離的最值問題,意在考查學(xué)生的計算能力和轉(zhuǎn)化能力.8、B【解析】

計算,故,解得答案.【詳解】當(dāng)時,,即,且.故,,故.故選:.【點睛】本題考查了數(shù)列的相關(guān)計算,意在考查學(xué)生的計算能力和對于數(shù)列公式方法的綜合應(yīng)用.9、C【解析】

利用向量垂直的表示、向量數(shù)量積的運算,結(jié)合充分必要條件的定義判斷即可.【詳解】由于點,,不共線,則“”;故“”是“”的充分必要條件.故選:C.【點睛】本小題主要考查充分、必要條件的判斷,考查向量垂直的表示,考查向量數(shù)量積的運算,屬于基礎(chǔ)題.10、D【解析】

利用特殊值代入法,作差法,排除不符合條件的選項,得到符合條件的選項.【詳解】已知,賦值法討論的情況:(1)當(dāng)時,令,,則,,排除B、C選項;(2)當(dāng)時,令,,則,排除A選項.故選:D.【點睛】比較大小通常采用作差法,本題主要考查不等式與不等關(guān)系,不等式的基本性質(zhì),利用特殊值代入法,排除不符合條件的選項,得到符合條件的選項,是一種簡單有效的方法,屬于中等題.11、B【解析】

求出的表達(dá)式,畫出函數(shù)圖象,結(jié)合圖象以及二次方程實根的分布,求出的范圍即可.【詳解】解:令,則,則,故,如圖示:由,得,函數(shù)恒過,,由,,可得,,,若方程有唯一解,則或,即或;當(dāng)即圖象相切時,根據(jù),,解得舍去),則的范圍是,故選:.【點睛】本題考查函數(shù)的零點問題,考查函數(shù)方程的轉(zhuǎn)化思想和數(shù)形結(jié)合思想,屬于中檔題.12、D【解析】

畫出可行域,將化為,通過平移即可判斷出最優(yōu)解,代入到目標(biāo)函數(shù),即可求出最值.【詳解】解:由約束條件作出可行域如圖,化目標(biāo)函數(shù)為直線方程的斜截式,.由圖可知當(dāng)直線過時,直線在軸上的截距最大,有最大值為3.故選:D.【點睛】本題考查了線性規(guī)劃問題.一般第一步畫出可行域,然后將目標(biāo)函數(shù)轉(zhuǎn)化為的形式,在可行域內(nèi)通過平移找到最優(yōu)解,將最優(yōu)解帶回到目標(biāo)函數(shù)即可求出最值.注意畫可行域時,邊界線的虛實問題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

由題知,該四棱錐為正四棱錐,作出該正四棱錐的高和斜高,連接,則球心O必在的邊上,設(shè),由球與四棱錐的內(nèi)切關(guān)系可知,設(shè),用和表示四棱錐的體積,解得和的關(guān)系,進(jìn)而表示出內(nèi)切球的半徑,并求出半徑的最大值,進(jìn)而求出球的體積的最大值.【詳解】設(shè),,由球O內(nèi)切于四棱錐可知,,,則,球O的半徑,,,,當(dāng)且僅當(dāng)時,等號成立,此時.故答案為:.【點睛】本題考查了棱錐的體積問題,內(nèi)切球問題,考查空間想象能力,屬于較難的填空壓軸題.14、【解析】

取基向量,,然后根據(jù)三點共線以及向量加減法運算法則將,表示為基向量后再相乘可得.【詳解】如圖:設(shè),又,且存在實數(shù)使得,,,,,,故答案為:.【點睛】本題考查了平面向量數(shù)量積的性質(zhì)及其運算,屬中檔題.15、2【解析】

求出焦點到漸近線的距離就可得到的等式,從而可求得離心率.【詳解】由題意,一條漸近線方程為,即,∴,由得,∴,,∴.故答案為:2.【點睛】本題考查求雙曲線的離心率,解題關(guān)鍵是求出焦點到漸近線的距離,從而得出一個關(guān)于的等式.16、{5}【解析】易得A∪B=A={1,3,9},則?U(A∪B)={5}.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(Ⅰ);(Ⅱ).【解析】

(Ⅰ)由正弦定理邊化角,再結(jié)合轉(zhuǎn)化即可求解;(Ⅱ)可設(shè),由,再由余弦定理解得,對中,由余弦定理有,通過勾股定理逆定理可得,進(jìn)而得解【詳解】(Ⅰ)由正弦定理得.而.由以上兩式得,即.由于,所以,又由于,得.(Ⅱ)設(shè),在中,由正弦定理有.由余弦定理有,整理得,由于,所以.在中,由余弦定理有.所以,所以.【點睛】本題考查正弦定理和余弦定理的綜合運用,屬于中檔題18、(1),;(2)米.【解析】

(1)過點作于點再在中利用正弦定理求解,再根據(jù)求解,進(jìn)而求得.再根據(jù)確定的范圍即可.(2)根據(jù)(1)有,再設(shè),求導(dǎo)分析函數(shù)的單調(diào)性與最值即可.【詳解】解:過點作于點則,在中,,,由正弦定理得:,,,,,因為,化簡得,令,,且,因為,故令即,記,當(dāng)時,單調(diào)遞增;當(dāng)時,單調(diào)遞減,又,當(dāng)時,取最大值,此時,的最大值為米.【點睛】本題主要考查了三角函數(shù)在實際中的應(yīng)用,需要根據(jù)題意建立角度與長度間的關(guān)系,進(jìn)而求導(dǎo)分析函數(shù)的單調(diào)性,根據(jù)三角函數(shù)值求解對應(yīng)的最值即可.屬于難題.19、(1);.;(2)【解析】

(1)根據(jù)題意,知,且,令和即可求出,,以及運用遞推關(guān)系求出的通項公式;(2)通過定義法證明出是首項為8,公比為4的等比數(shù)列,利用等比數(shù)列的前項和公式,即可求得的前項和.【詳解】解:(1)由題可知,,且,當(dāng)時,,則,當(dāng)時,,,由已知可得,且,∴的通項公式:.(2)設(shè),則,所以,,得是首項為8,公比為4的等比數(shù)列,所以數(shù)列的前項和為:,即,所以數(shù)列的前項和:.【點睛】本題考查通過遞推關(guān)系求數(shù)列的通項公式,以及等比數(shù)列的前項和公式,考查計算能力.20、(1)(2)(2,).【解析】

(1)利用極坐標(biāo)和直角坐標(biāo)的轉(zhuǎn)化公式求解.(2)先把兩個方程均化為普通方程,求解公共點的直角坐標(biāo),然后化為極坐標(biāo)即可.【詳解】(1)∵曲線C的極坐標(biāo)方程為,∴,則,即.(2),∴,聯(lián)立可得,(舍)或,公共點(,3),化為極坐標(biāo)(2,).【點睛】本題主要考查極坐標(biāo)和直角坐標(biāo)的轉(zhuǎn)化及交點的求解,熟記極坐標(biāo)和直角坐標(biāo)的轉(zhuǎn)化公式是求解的關(guān)鍵,交點問題一般是統(tǒng)一一種坐標(biāo)形式求解后再進(jìn)行轉(zhuǎn)化,側(cè)重考查數(shù)學(xué)運算的核心素養(yǎng).21、(1)答案見解析.(2)【解析】

(1)通過證明平面,證得,證得,由此證得平面,進(jìn)而證得平面平面.(2)建立空間直角坐標(biāo)系,利用平面和平面的法向量,計算出平面與平面所成銳二面角的余弦值.【詳解】(1)因為,所以平面,因為平面,所以.因為,點為中點,所以.因為,所以平面.因為平面,所以平面平面.(2)以點為坐標(biāo)原點,直線分別為軸,軸,過點與平面垂直的直線為軸,建立空間直角坐標(biāo)系,則,,,,,,,,,,設(shè)平面的一個法向量,則即取,則,,所以,設(shè)平面的一個法向量,則即取,則,,所以,設(shè)平面與平面所成銳二面角為,則.所以平面與平面所成銳二面角的余弦值為.【點睛】本小題主要考查面面垂直的證明,考查二面角的求法,考查空間想象能力和邏輯推理能力,屬于中檔題.22、(1)證明見解析;(2).【解析】

(1)證明,得到平面,得到證明.(2)以點為坐標(biāo)原點,建立如圖所示的空間

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論