版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
天津市和平區(qū)天津一中2026屆高二上數(shù)學期末學業(yè)水平測試試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知橢圓上一點到左焦點的距離為,是的中點,則()A.1 B.2C.3 D.42.橢圓的長軸長是()A.3 B.6C.9 D.43.已知,,,則的大小關(guān)系是()A. B.C. D.4.函數(shù)圖象如圖所示,則的解析式可以為A. B.C. D.5.已知圓與直線至少有一個公共點,則的取值范圍為()A. B.C. D.6.按照小李的閱讀速度,他看完《三國演義》需要40個小時.2021年12月20日,他開始閱讀《三國演義》,當天他讀了20分鐘,從第二天開始,他每天閱讀此書的時間比前一天增加10分鐘,則他恰好讀完《三國演義》的日期為()A.2022年1月8日 B.2022年1月9日C.2022年1月10日 D.2022年1月11日7.一盒子里有黑色、紅色、綠色的球各一個,現(xiàn)從中選出一個球.事件選出的球是紅色,事件選出的球是綠色.則事件與事件()A.是互斥事件,不是對立事件 B.是對立事件,不是互斥事件C.既是互斥事件,也是對立事件 D.既不是互斥事件也不是對立事件8.若數(shù)列為等差數(shù)列,數(shù)列為等比數(shù)列,則下列不等式一定成立的是()A. B.C. D.9.命題:“,”的否定形式為()A., B.,C., D.,10.甲、乙兩人下棋,甲獲勝的概率為30%,甲不輸?shù)母怕蕿?0%,則甲、乙下成平局的概率()A.50% B.30%C.10% D.60%11.已知函數(shù),則的值為()A. B.C. D.12.在等差數(shù)列中,,則等于A.2 B.18C.4 D.9二、填空題:本題共4小題,每小題5分,共20分。13.已知數(shù)列中,.若為等差數(shù)列,則______.14.設x,y滿足約束條件則的最大值為________15.若函數(shù)在處取得極小值,則a=__________16.已知雙曲線的一條漸近線被圓所截得的弦長為2,則雙曲線的離心率為___________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖1,在△MBC中,,A,D分別為棱BM,MC的中點,將△MAD沿AD折起到△PAD的位置,使,如圖2,連結(jié)PB,PC,BD(1)求證:平面PAD⊥平面ABCD;(2)若E為PC中點,求直線DE與平面PBD所成角的正弦值18.(12分)已知橢圓過點,且離心率(1)求橢圓的方程;(2)設點為橢圓的左焦點,點,過點作的垂線交橢圓于點,,連接與交于點①若,求;②求的值19.(12分)如圖,四棱錐中,底面是邊長為2的正方形,,,且,為的中點(1)求平面與平面夾角的余弦值;(2)在線段上是否存在點,使得點到平面的距離為?若存在,確定點的位置;若不存在,請說明理由20.(12分)如圖,在長方體中,底面是正方形,O是的中點,(1)證明:(2)求直線與平面所成角的正弦值21.(12分)已知兩點(1)求以線段為直徑的圓C的方程;(2)在(1)中,求過M點的圓C的切線方程22.(10分)已知各項均為正數(shù)的等差數(shù)列中,,且,,構(gòu)成等比數(shù)列的前三項(1)求數(shù)列,的通項公式;(2)求數(shù)列的前項和
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】由橢圓的定義得,進而根據(jù)中位線定理得.【詳解】解:由橢圓方程得,即,因為由橢圓的定義得,,所以,因為是的中點,是的中點,所以.故選:A2、B【解析】根據(jù)橢圓方程有,即可確定長軸長.【詳解】由橢圓方程知:,故長軸長為6.故選:B3、B【解析】利用微積分基本定理計算,利用積分的幾何意義求扇形面積得到,然后比較大小.【詳解】,表示以原點為圓心,半徑為2的圓在第二象限的部分的面積,∴;,∵e=2.71828…>2.7,,,,故選:4、A【解析】利用排除法:對于B,令得,,即有兩個零點,不符合題意;對于C,當時,,當且僅當時等號成立,即函數(shù)在區(qū)間上存在最大值,不符合題意;對于D,的定義域為,不符合題意;本題選擇A選項.點睛:函數(shù)圖象的識辨可從以下方面入手:(1)從函數(shù)的定義域,判斷圖象的左右位置;從函數(shù)的值域,判斷圖象的上下位置.(2)從函數(shù)的單調(diào)性,判斷圖象的變化趨勢.(3)從函數(shù)的奇偶性,判斷圖象的對稱性.(4)從函數(shù)的特征點,排除不合要求的圖象.利用上述方法排除、篩選選項5、C【解析】利用點到直線距離公式求出圓心到直線的距離范圍,從而求出的取值范圍.【詳解】圓心到直線的距離,當且僅當時等號成立,故只需即可.故選:C6、B【解析】由等差數(shù)列前n項和列不等式求解即可.【詳解】由題知,每天的讀書時間為等差數(shù)列,首項為20,公差為10,記n天讀完.則40小時=2400分鐘,令,得或(舍去),故,即第21天剛好讀完,日期為2022年1月9日.故選:B7、A【解析】根據(jù)事件的關(guān)系進行判斷即可.【詳解】由題意可知,事件與為互斥事件,但事件不是必然事件,所以,事件與事件是互斥事件,不是對立事件.故選:A.【點睛】本題考查事件關(guān)系的判斷,考查互斥事件和對立事件概率的理解,屬于基礎(chǔ)題.8、D【解析】對選項A,令即可檢驗;對選項B,令即可檢驗;對選項C,令即可檢驗;對選項D,設出等差數(shù)列的首項和公比,然后作差即可.【詳解】若,則可得:,故選項A錯誤;若,則可得:,故選項B錯誤;若,則可得:,故選項C錯誤;不妨設的首項為,公差為,則有:則有:,故選項D正確故選:D9、D【解析】根據(jù)含一個量詞的命題的否定方法直接得到結(jié)果.【詳解】因為全稱命題的否定是特稱命題,所以命題:“,”的否定形式為:,,故選:D.【點睛】本題考查全稱命題的否定,難度容易.含一個量詞的命題的否定方法:修改量詞,否定結(jié)論.10、A【解析】根據(jù)甲獲勝和甲、乙兩人下成平局是互斥事件即可求解.【詳解】甲不輸有兩種情況:甲獲勝或甲、乙兩人下成平局,甲獲勝和甲、乙兩人下成平局是互斥事件,所以甲、乙兩人下成平局的概率為.故選:A.11、C【解析】利用導數(shù)公式及運算法則求得,再求解【詳解】因為,所以,所以故選:C12、D【解析】利用等差數(shù)列性質(zhì)得到,,計算得到答案.詳解】等差數(shù)列中,故選D【點睛】本題考查了等差數(shù)列的計算,利用性質(zhì)可以簡化運算,是解題的關(guān)鍵.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】利用等差中項求解即可【詳解】由為等差數(shù)列,則,解得故答案為:14、1【解析】先作出可行域,由,得,作出直線,向下平移過點時,取得最大值,求出點坐標代入目標函數(shù)中可得答案【詳解】作出可行域如圖(圖中陰影部分),由,得,作出直線,向下平移過點時,取得最大值,由,得,即,所以的最大值為,故答案為:115、2【解析】對函數(shù)求導,根據(jù)極值點得到或,討論的不同取值,利用導數(shù)的方法判定函數(shù)單調(diào)性,驗證極值點,即可得解.【詳解】由可得,因為函數(shù)在處取得極小值,所以,解得或,若,則,當時,,則單調(diào)遞增;當時,,則單調(diào)遞減;當時,,則單調(diào)遞增;所以函數(shù)在處取得極小值,符合題意;當時,,當時,,則單調(diào)遞增;當時,,則單調(diào)遞減;當時,,則單調(diào)遞增;所以函數(shù)在處取得極大值,不符合題意;綜上:.故答案為:2.【點睛】思路點睛:已知函數(shù)極值點求參數(shù)時,一般需要先對函數(shù)求導,根據(jù)極值點求出參數(shù),再驗證所求參數(shù)是否符合題意即可.16、或2【解析】由圓的方程有圓心,半徑為,討論雙曲線的焦點分別在x或y軸上對應的漸近線方程,根據(jù)已知及弦長與半徑、弦心距的幾何關(guān)系得到雙曲線參數(shù)的齊次方程,即可求離心率.【詳解】由題設,圓的標準方程為,即圓心,半徑為,若雙曲線為時,漸近線為且,所以圓心到雙曲線漸近線的距離為,由弦長、弦心距、半徑的關(guān)系知:,故,得:,又,所以,故.若雙曲線為時,漸近線為且,所以圓心到雙曲線漸近線的距離為,由弦長、弦心距、半徑的關(guān)系知:,故,得:,又,所以,故.綜上,雙曲線的離心率為或2.故答案為:或2.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2).【解析】(1)推導出,,利用線面垂直的判定定理可得平面,再利用面面垂直的判定定理即可證明;(2)以A為坐標原點,建立如圖空間直角坐標系,利用向量法即可求出直線DE與平面所成角的正弦值.【小問1詳解】由題意知,因為點A、D分別為MB、MC中點,所以,又,所以,所以.因為,所以,又,所以平面,又平面,所以平面平面;【小問2詳解】因為,,,所以兩兩垂直,以A為坐標原點,建立如圖空間直角坐標系,,則,設平面的一個法向量為,則,令,得,所以,設直線DE與平面所成角為,則,所以直線DE與平面所成角的正弦值為.18、(1)(2)①,②【解析】(1)由題意得解方程組求出,從而可得橢圓的方程,(2)①由題意可得的方程為,再與橢圓方程聯(lián)立,解方程組求出的坐標,從而可求出;②當時,,當時,直線方程為,與橢圓方程聯(lián)立,消去,利用根與系數(shù)的關(guān)系,結(jié)合中點坐標公式可得中點的坐標,再將直線的方程與方程聯(lián)立,求出點的坐標,從而可求出的值【小問1詳解】由題意得解得,所以橢圓的方程為.【小問2詳解】①當時,直線的斜率,則的垂線的方程為由得解得故,,②由,,顯然斜率存在,,當時,當時,直線過點且與直線垂直,則直線方程為由得顯然設,,則,則中點直線的方程為,由得所以綜上的值為19、(1)(2)存在,點為線段的靠近點的三等分點【解析】(1)根據(jù)題意證得平面,進而證得平面,得到平面,以點為坐標原點,,,所在直線分別為軸、軸和軸建立空間直角坐標系,求得平面和平面的法向量,結(jié)合向量的夾角公式,即可求解;(2)設點,求得平面的法向量為,結(jié)合向量的距離公式列出方程,求得的值,即可得到答案.【小問1詳解】解:因為四邊形為正方形,則,,由,,,所以平面,因為平面,所以,又由,,,所以平面,又因為平面,所以,因為且平面,所以平面,由平面,且,不妨以點為坐標原點,,,所在直線分別為軸、軸和軸建立空間直角坐標系,如圖所示,則,,,,可得,,,設平面的法向量為,則,取,可得,所以,易得平面的法向量為,則,由平面與平面夾角為銳角,所以平面與平面夾角的余弦值【小問2詳解】解:設點,可得,,設平面的法向量為,則,取,可得,所以,所以點到平面的距離為,解得,即或因為,所以故當點為線段的靠近點的三等分點時,點到平面的距離為.20、(1)證明見解析(2)【解析】(1)以A為坐標原點,的方向分別為x,y,z軸的正方向,建立空間直角坐標系,令,可得的坐標,再求數(shù)量積可得答案;(2)求出平面的法向量、的坐標,由線面角的向量求法可得答案.【小問1詳解】在長方體中,以A為坐標原點,的方向分別為x,y,z軸的正方向,建立如圖所示的空間直角坐標系不妨令,則,,因為,所以【小問2詳解】由(1)可知,,,設平面的法向量,則令,得,設直線與平面所成的角,則.21、(1);(2
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 《國際物流管理 第4版》 課件 第4章 國際物流標準化管理
- 護理專業(yè)護理實踐能力提升
- 機構(gòu)健全管理制度承諾函9篇
- 機械傳動系統(tǒng)
- 電子廠第3周工安工作報告范本
- 2026年生物科技服務公司倉庫出入庫管理制度
- 生物美膚培訓課件模板
- 早期創(chuàng)業(yè)培訓課件
- 組工信息寫作培訓課件
- 早會培訓課件
- 食品生產(chǎn)余料管理制度
- 2026年中國航空傳媒有限責任公司市場化人才招聘備考題庫有答案詳解
- 2026年《全科》住院醫(yī)師規(guī)范化培訓結(jié)業(yè)理論考試題庫及答案
- 2026北京大興初二上學期期末語文試卷和答案
- 專題23 廣東省深圳市高三一模語文試題(學生版)
- 2026年時事政治測試題庫100道含完整答案(必刷)
- 重力式擋土墻施工安全措施
- 葫蘆島事業(yè)單位筆試真題2025年附答案
- 2026年公平競爭審查知識競賽考試題庫及答案(一)
- 置業(yè)顧問2025年度工作總結(jié)及2026年工作計劃
- 金華市軌道交通控股集團有限公司招聘筆試題庫2026
評論
0/150
提交評論