版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
貴州省銅仁市德江一中2026屆高二數(shù)學(xué)第一學(xué)期期末檢測試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知線段AB的端點B在直線l:y=-x+5上,端點A在圓C1:上運動,線段AB的中點M的軌跡為曲線C2,若曲線C2與圓C1有兩個公共點,則點B的橫坐標(biāo)的取值范圍是()A.(-1,0) B.(1,4)C.(0,6) D.(-1,5)2.下列直線中,傾斜角最大的為()A. B.C. D.3.拋物線上有兩個點,焦點,已知,則線段的中點到軸的距離是()A.1 B.C.2 D.4.設(shè)是可導(dǎo)函數(shù),當(dāng),則()A.2 B.C. D.5.的展開式中的系數(shù)是()A.1792 B.C.448 D.6.等比數(shù)列的各項均為正數(shù),已知向量,,且,則A.12 B.10C.5 D.7.如圖是正方體的平面展開圖,在這個正方體中①與平行;②與是異面直線;③與成60°角;④與是異面直線以上四個結(jié)論中,正確結(jié)論的序號是A.①②③ B.②④C.③④ D.②③④8.已知拋物線的焦點為,點為拋物線上一點,點,則的最小值為()A. B.2C. D.39.函數(shù)在上的最小值為()A. B.4C. D.10.設(shè),,,則,,大小關(guān)系是A. B.C. D.11.設(shè)函數(shù)的導(dǎo)函數(shù)是,若,則()A. B.C. D.12.已知點P是雙曲線上的動點,過原點O的直線l與雙曲線分別相交于M、N兩點,則的最小值為()A.4 B.3C.2 D.1二、填空題:本題共4小題,每小題5分,共20分。13.已知拋物線的焦點為,準(zhǔn)線為,過點的直線與拋物線交于A,B兩點(點B在第一象限),與準(zhǔn)線交于點P.若,,則____________.14.設(shè),若,則S=________.15.若實數(shù)、滿足,則的取值范圍為___________.16.設(shè)為三角形的一個內(nèi)角,已知曲線:,則可能是___________.(寫出不同曲線的名稱,盡可能多.注:在一些問題情景中,直線可以理解成是特殊的曲線)三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在平面直角坐標(biāo)系中,設(shè)點,直線,點P在直線l上移動,R是線段PF與y軸的交點,也是PF的中點.,(1)求動點Q的軌跡的方程E;(2)過點F作兩條互相垂直的曲線E的弦AB、CD,設(shè)AB、CD的中點分別為M,N.求直線MN過定點R的坐標(biāo)18.(12分)在平面直角坐標(biāo)系中,有一條長度為3的線段,端點,分別在軸、軸上運動,為線段上一點,且.(1)求點的軌跡的方程;(2)已知不過原點的直線與相交于,兩點,且線段始終被直線平分.求的面積取最大時直線的方程.19.(12分)設(shè)數(shù)列的前項和為,,且滿足,.(1)求數(shù)列的通項公式;(2)證明:對一切正整數(shù),有.20.(12分)已知圓C經(jīng)過坐標(biāo)原點O和點(4,0),且圓心在x軸上(1)求圓C的方程;(2)已知直線l:與圓C相交于A、B兩點,求所得弦長值21.(12分)設(shè)函數(shù).(1)當(dāng)k=1時,求函數(shù)的單調(diào)區(qū)間;(2)當(dāng)時,求函數(shù)在上的最小值m和最大值M.22.(10分)已知二次曲線的方程:(1)分別求出方程表示橢圓和雙曲線的條件;(2)若雙曲線與直線有公共點且實軸最長,求雙曲線方程;(3)為正整數(shù),且,是否存在兩條曲線,其交點P與點滿足,若存在,求的值;若不存在,說明理由
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】設(shè),AB的中點,由中點坐標(biāo)公式求得,代入圓C1:得點點M的軌跡方程,再根據(jù)兩圓的位置關(guān)系建立不等式,代入,求解即可得點B的橫坐標(biāo)的取值范圍.【詳解】解:設(shè),AB的中點,則,所以,又因為端點A在圓C1:上運動,所以,即,因為曲線C2與圓C1有兩個公共點,所以,又因B在直線l:y=-x+5上,所以,所以,整理得,即,解得,所以點B的橫坐標(biāo)的取值范圍是,故選:D.2、D【解析】首先分別求直線的斜率,再結(jié)合直線傾斜角與斜率的關(guān)系,即可判斷選項.【詳解】A.直線的斜率;B.直線的斜率;C.直線的斜率;D.直線的斜率,因為,結(jié)合直線的斜率與傾斜角的關(guān)系,可知直線的傾斜角最大.故選:D3、B【解析】利用拋物線的定義,將拋物線上的點到焦點的距離轉(zhuǎn)化為點到準(zhǔn)線的距離,即可求出線段中點的橫坐標(biāo),即得到答案.【詳解】由已知可得拋物線的準(zhǔn)線方程為,設(shè)點的坐標(biāo)分別為和,由拋物線的定義得,即,線段中點的橫坐標(biāo)為,故線段的中點到軸的距離是.故選:.4、C【解析】由導(dǎo)數(shù)的定義可得,即可得答案【詳解】根據(jù)題意,,故.故選:C5、D【解析】根據(jù)二項式展開式的通項公式計算出正確答案.【詳解】的展開式中,含的項為.所以的系數(shù)是.故選:D6、C【解析】利用數(shù)量積運算性質(zhì)、等比數(shù)列的性質(zhì)及其對數(shù)運算性質(zhì)即可得出【詳解】向量=(,),=(,),且?=4,∴+=4,由等比數(shù)列的性質(zhì)可得:=……===2,則log2(?)=故選C【點睛】本題考查數(shù)量積運算性質(zhì)、等比數(shù)列的性質(zhì)及其對數(shù)運算性質(zhì),考查推理能力與計算能力,屬于中檔題7、C【解析】根據(jù)平面展開圖可得原正方體,根據(jù)各點的分布逐項判斷可得正確的選項.【詳解】由平面展開圖可得原正方體如圖所示:由圖可得:為異面直線,與不是異面直線,是異面直線,故①②錯誤,④正確.連接,則為等邊三角形,而,故或其補角為與所成的角,因為,故與所成的角為,故③正確.綜上,正確命題的序號為:③④.故選:C.【點睛】本題考查正方體的平面展開圖,注意展開圖中的點與正方體中的頂點的對應(yīng)關(guān)系,本題屬于容易題.8、D【解析】求出拋物線C的準(zhǔn)線l的方程,過A作l的垂線段,結(jié)合幾何意義及拋物線定義即可得解.【詳解】拋物線的準(zhǔn)線l:,顯然點A在拋物線C內(nèi),過A作AM⊥l于M,交拋物線C于P,如圖,在拋物線C上任取不同于點P的點,過作于點N,連PF,AN,,由拋物線定義知,,于是得,即點P是過A作準(zhǔn)線l的垂線與拋物線C的交點時,取最小值,所以的最小值為3.故選:D9、D【解析】求出導(dǎo)數(shù),由導(dǎo)數(shù)確定函數(shù)在上的單調(diào)性與極值,可得最小值【詳解】,所以時,,遞減,時,,遞增,所以是在上的唯一極值點,極小值也是最小值.故選:D10、A【解析】構(gòu)造函數(shù),根據(jù)的單調(diào)性可得(3),從而得到,,的大小關(guān)系【詳解】考查函數(shù),則,在上單調(diào)遞增,,(3),即,,故選:【點睛】本題考查了利用函數(shù)的單調(diào)性比較大小,考查了構(gòu)造法和轉(zhuǎn)化思想,屬基礎(chǔ)題11、A【解析】求導(dǎo)后,令,可求得,再令可求得結(jié)果.【詳解】因為,所以,所以,所以,所以,所以.故選:A【點睛】本題考查了導(dǎo)數(shù)的計算,考查了求導(dǎo)函數(shù)值,屬于基礎(chǔ)題.12、C【解析】根據(jù)雙曲線的對稱性可得為的中點,即可得到,再根據(jù)雙曲線的性質(zhì)計算可得;【詳解】解:根據(jù)雙曲線的對稱性可知為的中點,所以,又在上,所以,當(dāng)且僅當(dāng)在雙曲線的頂點時取等號,所以故選:C二、填空題:本題共4小題,每小題5分,共20分。13、【解析】過點作,垂足為,過點作,垂足為,然后根據(jù)拋物線的定義和三角形相似的關(guān)系可求得結(jié)果【詳解】過點作,垂足為,過點作,垂足為,由拋物線的定義可知,,不妨設(shè),因為,所以,因為∽,所以,即,所以,所以,因為與反向,所以.故答案為:14、1007【解析】可證f(x)+f(1﹣x)=1,由倒序相加法可得所求為1007對的組合,即1007個1,可得答案【詳解】解:∵函數(shù)f(x),∴f(x)+f(1﹣x)1故可得S=f()+f()…+f()=1007×1=1007,故答案為:1007點睛】本題考查倒序相加法求和,推斷出f(x)+f(1﹣x)=1是解題的關(guān)鍵.15、【解析】直接利用換元法以及基本不等式,求出結(jié)果【詳解】解:設(shè),由于,所以,由于,(當(dāng)且僅當(dāng)時取等號)所以(當(dāng)且僅當(dāng)時取等號),(當(dāng)且僅當(dāng)時取等號),故,,所以,整理得:故的取值范圍為的取值范圍故答案為:16、焦點在軸上的橢圓,焦點在軸上的雙曲線,兩條直線.【解析】討論,和三種情況,進而根據(jù)曲線方程的特征得到答案.【詳解】若,則曲線:,而,曲線表示焦點在y軸上的橢圓;若,則曲線:或,曲線表示兩條直線;若,則曲線:,而,曲線表示焦點在x軸上的雙曲線.故答案為:焦點在y軸上橢圓,焦點在x軸上的雙曲線,兩條直線.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)由圖中的幾何關(guān)系可知,故可知動點Q的軌跡E是以F為焦點,l為準(zhǔn)線的拋物線,但不能和原點重合,即可直接寫出拋物線的方程;(2)設(shè)出直線AB的方程,把點、的坐標(biāo)代入拋物線方程,兩式作差后,再利用中點坐標(biāo)公式求出點M的坐標(biāo),同理求出點的坐標(biāo),即可求出直線MN的方程,最后可求出直線MN過哪一定點.【小問1詳解】∵直線的方程為,點R是線段FP的中點且,∴RQ是線段FP的垂直平分線,∵,∴是點Q到直線l的距離,∵點Q在線段FP的垂直平分線,∴,則動點Q的軌跡E是以F為焦點,l為準(zhǔn)線的拋物線,但不能和原點重合,即動點Q軌跡的方程為.【小問2詳解】設(shè),,由題意直線AB斜率存在且不為0,設(shè)直線AB的方程為,由已知得,兩式作差可得,即,則,代入可得,即點M的坐標(biāo)為,同理設(shè),,直線的方程為,由已知得,兩式作差可得,即,則,代入可得,即點的坐標(biāo)為,則直線MN的斜率為,即方程為,整理得,故直線MN恒過定點.18、(1)(2)【解析】(1)設(shè),根據(jù)題意可得,,利用兩點之間的距離公式表示出,化簡即可得出結(jié)果;(2)設(shè),,線段的中點為,利用兩點坐標(biāo)表示直線斜率的公式和點差法求出直線的斜率,設(shè)的方程為,聯(lián)立橢圓方程并消去y得到關(guān)于x的一元二次方程,根據(jù)韋達定理表示、進而得出弦長,利用點到直線的距離公式求出原點到的距離,結(jié)合基本不等式計算即可.【小問1詳解】設(shè),由為線段上一點,且,得,,又,則,整理可得,所以軌跡的方程為;【小問2詳解】設(shè),,線段的中點為.∵在直線上,∴,∵A,在軌跡上,∴兩式相減,可得,∴,即直線的斜率為,依題意,可設(shè)直線的方程為,由可得,則解得且由韋達定理,得,∴∵原點到直線的距離為∴,當(dāng)且僅當(dāng),即時等號成立,即時,三角形的面積最大,此時直線的方程為.19、(1),;(2)證明見解析.【解析】(1)利用關(guān)系可得,根據(jù)等比數(shù)列的定義易知為等比數(shù)列,進而寫出的通項公式;(2)由,將不等式左側(cè)放縮,即可證結(jié)論.【小問1詳解】當(dāng)時,,,兩式相減得:,整理可得:,而,所以是首項為2,公比為1的等比數(shù)列,故,即,.【小問2詳解】,..20、(1)(2)【解析】(1)求出圓心和半徑,寫出圓的方程;(2)求出圓心到直線距離,進而利用垂徑定理求出弦長.【小問1詳解】由題意可得,圓心為(2,0),半徑為2.則圓的方程為;【小問2詳解】由(1)可知:圓C半徑為,設(shè)圓心(2,0)到l的距離為d,則,由垂徑定理得:21、(1)增區(qū)間為(2),【解析】(1)求導(dǎo),由判別式可判斷導(dǎo)數(shù)符號,然后可得;(2)求導(dǎo),求導(dǎo)數(shù)零點,比較函數(shù)極值和端點函數(shù)值,結(jié)合單調(diào)性可得.【小問1詳解】因為,所以,,因為,所以恒成立所以的增區(qū)間為.【小問2詳解】當(dāng)時,,令,解得,當(dāng)時,,當(dāng)時,,當(dāng)時,所以,函數(shù)在上單調(diào)遞增,在上單調(diào)遞減,在上單調(diào)遞增.因為,所以在區(qū)間上的最大值,最小值為22、(1)時,方程表示橢圓,時,方程表示雙曲線;(2);(3)存在,且或或.【解析】(1)當(dāng)且僅當(dāng)分母都為正,且不相等時,方程表示橢圓;當(dāng)且僅當(dāng)分母異號時,方程表示雙曲線(2)將直線與曲線聯(lián)立化簡得:,利用雙曲線與直線有公共點,可確定的范圍,從而可求雙曲線的實軸,進而可得雙曲線方程;(3)由(1)知,,是橢圓,,,,是雙曲線,結(jié)合圖象的幾何性質(zhì),任意兩橢圓之間無公共點,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 建筑工程紙質(zhì)合同范本
- 夫妻合伙分紅合同范本
- 房屋模板安裝合同范本
- 房屋設(shè)計服務(wù)合同范本
- 家居裝修代理合同范本
- 建筑勞務(wù)合同解除協(xié)議
- 戲劇服裝采購合同范本
- 委托購買物品合同范本
- 工程勞務(wù)補充合同范本
- 工程施工合同保密協(xié)議
- 2024-2025學(xué)年重慶市大足區(qū)六年級(上)期末數(shù)學(xué)試卷
- 2025年高級經(jīng)濟師金融試題及答案
- 蘇少版七年級上冊2025秋美術(shù)期末測試卷(三套含答案)
- 2026年哈爾濱科學(xué)技術(shù)職業(yè)學(xué)院單招職業(yè)技能測試題庫帶答案詳解
- GB/T 7714-2025信息與文獻參考文獻著錄規(guī)則
- 涉融資性貿(mào)易案件審判白皮書(2020-2024)-上海二中院
- DB65∕T 8031-2024 高海拔地區(qū)民用建筑設(shè)計標(biāo)準(zhǔn)
- 2025年人社局工作考試題及答案
- 2026年山東力明科技職業(yè)學(xué)院單招職業(yè)技能考試題庫含答案詳解
- 2024年暨南大學(xué)馬克思主義基本原理概論期末考試題帶答案
- 2025內(nèi)蒙古能源集團智慧運維公司社會招聘(105人)筆試參考題庫附帶答案詳解(3卷)
評論
0/150
提交評論