版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
吉林省白城市通渭縣三校2026屆數(shù)學(xué)高二上期末調(diào)研模擬試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知橢圓和雙曲線有共同焦點,是它們一個交點,且,記橢圓和雙曲線的離心率分別為,則的最大值為A.3 B.2C. D.2.已知雙曲線的左、右焦點分別為,,為坐標(biāo)原點,為雙曲線在第一象限上的點,直線,分別交雙曲線的左,右支于另一點,,若,且,則雙曲線的離心率為()A. B.3C.2 D.3.拋物線上的一點到其焦點的距離等于()A. B.C. D.4.命題“存在,使得”的否定為()A.存在, B.對任意,C對任意, D.對任意,5.已知圓的圓心到直線的距離為,則圓與圓的位置關(guān)系是()A.相交 B.內(nèi)切C.外切 D.外離6.若圓上恰有2個點到直線的距離為1,則實數(shù)的取值范圍為()A B.C. D.7.已知動圓M與直線y=2相切,且與定圓C:外切,求動圓圓心M的軌跡方程A. B.C. D.8.已知函數(shù)在處取得極值,則的極大值為()A. B.C. D.9.是等差數(shù)列,且,,則的值()A. B.C. D.10.已知數(shù)列的前n項和為,則“數(shù)列是等比數(shù)列”為“存在,使得”的()A.既不充分也不必要條件 B.必要不充分條件C.充要條件 D.充分不必要條件11.下列說法正確的個數(shù)有()(ⅰ)命題“若,則”的否命題為:“若,則”;(ⅱ)“,”的否定為“,使得”;(ⅲ)命題“若,則有實根”為真命題;(ⅳ)命題“若,則”的否命題為真命題;A.1個 B.2個C.3個 D.4個12.已知數(shù)列是等差數(shù)列,下面的數(shù)列中必為等差數(shù)列的個數(shù)為()①②③A.0 B.1C.2 D.3二、填空題:本題共4小題,每小題5分,共20分。13.直線的一個法向量________.14.設(shè)是同一個半徑為4的球的球面上四點,為等邊三角形且其面積為,則三棱錐體積的最大值為___________.15.已知,點在軸上,且,則點的坐標(biāo)為____________.16.如果方程表示焦點在軸上的橢圓,那么實數(shù)的取值范圍是______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知是奇函數(shù).(1)求的值;(2)若,求的值18.(12分)在平面直角坐標(biāo)系中,設(shè)橢圓()的離心率是e,定義直線為橢圓的“類準(zhǔn)線”,已知橢圓C的“類準(zhǔn)線”方程為,長軸長為8.(1)求橢圓C的標(biāo)準(zhǔn)方程;(2)O為坐標(biāo)原點,A為橢圓C的右頂點,直線l交橢圓C于E,F(xiàn)兩不同點(點E,F(xiàn)與點A不重合),且滿足,若點P滿足,求直線的斜率的取值范圍.19.(12分)已知函數(shù)其中.(1)當(dāng)時,求函數(shù)的單調(diào)區(qū)間;(2)當(dāng)時,函數(shù)有兩個零點,,滿足,證明.20.(12分)已知函數(shù),,其中為自然對數(shù)的底數(shù).(1)若為的極值點,求的單調(diào)區(qū)間和最大值;(2)是否存在實數(shù),使得的最大值是?若存在,求出的值;若不存在,說明理由.21.(12分)已知拋物線上一點到拋物線焦點的距離為,點關(guān)于坐標(biāo)原點對稱,過點作軸的垂線,為垂足,直線與拋物線交于兩點.(1)求拋物線的方程;(2)設(shè)直線與軸交點分別為,求的值;(3)若,求.22.(10分)在等差數(shù)列中,,前10項和(1)求列的通項公式;(2)若數(shù)列是首項為1,公比為2的等比數(shù)列,求的前8項和
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】設(shè)橢圓長半軸長為a1,雙曲線的半實軸長a2,焦距2c.根據(jù)橢圓及雙曲線的定義可以用a1,a2表示出|PF1|,|PF2|,在△F1PF2中根據(jù)余弦定理可得到,利用基本不等式可得結(jié)論【詳解】如圖,設(shè)橢圓的長半軸長為a1,雙曲線的半實軸長為a2,則根據(jù)橢圓及雙曲線的定義:|PF1|+|PF2|=2a1,|PF1|﹣|PF2|=2a2,∴|PF1|=a1+a2,|PF2|=a1﹣a2,設(shè)|F1F2|=2c,∠F1PF2=,則:在△PF1F2中,由余弦定理得,4c2=(a1+a2)2+(a1﹣a2)2﹣2(a1+a2)(a1﹣a2)cos∴化簡得:a12+3a22=4c2,該式可變成:,∴≥2∴,故選D【點睛】本題考查圓錐曲線的共同特征,考查通過橢圓與雙曲線的定義求焦點三角形三邊長,考查利用基本不等式求最值問題,屬于中檔題2、D【解析】由雙曲線的定義可設(shè),,由平面幾何知識可得四邊形為平行四邊形,三角形,用余弦定理,可得,的方程,再由離心率公式可得所求值【詳解】由雙曲線的定義可得,由,可得,,結(jié)合雙曲線性質(zhì)可以得到,而,結(jié)合四邊形對角線平分,可得四邊形為平行四邊形,結(jié)合,故,對三角形,用余弦定理,得到,結(jié)合,可得,,,代入上式子中,得到,即,結(jié)合離心率滿足,即可得出,故選:D【點睛】本題考查求雙曲線的離心率,熟記雙曲線的簡單性質(zhì)即可,屬于??碱}型.3、C【解析】由點的坐標(biāo)求得參數(shù),再由焦半徑公式得結(jié)論【詳解】由題意,解得,所以,故選:C4、D【解析】根據(jù)特稱命題否定的方法求解,改變量詞,否定結(jié)論.【詳解】由題意可知命題“存在,使得”的否定為“對任意,”.故選:D.5、B【解析】求出兩圓的圓心與半徑,根據(jù)兩圓的位置關(guān)系的判定即可求解.【詳解】已知圓的圓心到直線的距離,即,解得或,因為,所以,圓的圓心的坐標(biāo)為,半徑,將圓化為標(biāo)準(zhǔn)方程為,其圓心的坐標(biāo)為,半徑,圓心距,兩圓內(nèi)切,故選:B6、A【解析】求得圓心到直線的距離,根據(jù)題意列出的不等關(guān)系式,即可求得的范圍.【詳解】因為圓心到直線的距離,故要滿足題意,只需,解得.故選:A.7、D【解析】由題意動圓M與直線y=2相切,且與定圓C:外切∴動點M到C(0,-3)的距離與到直線y=3的距離相等由拋物線的定義知,點M的軌跡是以C(0,-3)為焦點,直線y=3為準(zhǔn)線的拋物線故所求M的軌跡方程為考點:軌跡方程8、B【解析】首先求出函數(shù)的導(dǎo)函數(shù),依題意可得,即可求出參數(shù)的值,從而得到函數(shù)解析式,再根據(jù)導(dǎo)函數(shù)得到函數(shù)單調(diào)性,即可求出函數(shù)的極值點,從而求出函數(shù)的極大值;【詳解】解:因為,所以,依題意可得,即,解得,所以定義域為,且,令,解得或,令解得,即在和上單調(diào)遞增,在上單調(diào)遞減,即在處取得極大值,在處取得極小值,所以;故選:B9、B【解析】根據(jù)等差數(shù)列的性質(zhì)計算【詳解】因為是等差數(shù)列,所以,,也成等差數(shù)列,所以故選:B10、D【解析】由充分必要條件的定義,結(jié)合等比數(shù)列的通項公式和求和公式,以及利用特殊數(shù)列的分法,即可求解.【詳解】由題意,數(shù)列是等比數(shù)列,設(shè)等比數(shù)列的公比為,則,所以存在,使得,即充分性成立;若存在,使得,可取,即,可得,當(dāng),可得,此時數(shù)列不是等比數(shù)列,即必要性不成立,所以數(shù)列是等比數(shù)列為存在,使得的充分不必要條件.故選:D.11、B【解析】根據(jù)四種命題的結(jié)構(gòu)特征可判斷(?。áぃ┑恼`,根據(jù)全稱命題的否定形式可判斷(ⅱ)的正誤,根據(jù)判別式的正誤可判斷(ⅲ)的正誤.【詳解】命題“若,則”的否命題”為“若,則”,故(ⅰ)錯誤.“,”的否定為“,使得”,故(ⅱ)正確,當(dāng)時,,故有實根,故(ⅲ)正確,“若,則”的否命題為“若,則”,取,則,故命題若,則為假命題,故(ⅳ)錯誤.故選:B12、C【解析】根據(jù)等差數(shù)列的定義判斷【詳解】設(shè)的公差為,則,是等差數(shù)列,,是常數(shù)列,也是等差數(shù)列,若,則不是等差數(shù)列,故選:C二、填空題:本題共4小題,每小題5分,共20分。13、(答案不唯一)【解析】根據(jù)給定直線方程求出其方向向量,再由法向量意義求解作答.【詳解】直線的方向向量為,而,所以直線的一個法向量.故答案為:14、【解析】求出等邊的邊長,畫出圖形,判斷D的位置,然后求解即可.【詳解】為等邊三角形且其面積為,則,如圖所示,設(shè)點M為的重心,E為AC中點,當(dāng)點在平面上的射影為時,三棱錐的體積最大,此時,,點M為三角形ABC的重心,,中,有,,所以三棱錐體積的最大值故答案為:【點睛】思路點睛:本題考查球的內(nèi)接多面體,棱錐的體積的求法,要求內(nèi)接三棱錐體積的最大值,底面是面積一定的等邊三角形,需要該三棱錐的高最大,故需要底面,再利用內(nèi)接球,求出高,即可求出體積的最大值,考查學(xué)生的空間想象能力與數(shù)形結(jié)合思想,及運算能力,屬于中檔題.15、【解析】設(shè)P(0,0,z),由|PA|=|PB|,得1+4+(z?1)2=4+4+(z?2)2,解得z=3,故點P的坐標(biāo)為(0,0,3).16、【解析】化簡橢圓的方程為標(biāo)準(zhǔn)形式,列出不等式,即可求解.【詳解】由題意,方程可化為,因為方程表示焦點在軸上的橢圓,可得,解得,實數(shù)的取值范圍是.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)4【解析】(1)根據(jù)奇函數(shù)的定義,代入化簡得,進(jìn)而可得的值;(2)設(shè),可得,根據(jù)奇函數(shù)的性質(zhì)得,進(jìn)而可得結(jié)果.【詳解】解:(1)因為是奇函數(shù),所以,即,整理得,又,所以(2)設(shè),因為,所以因為是奇函數(shù),所以所以【點睛】本題主要考查了已知函數(shù)的奇偶性求參數(shù)的值,根據(jù)函數(shù)的奇偶性求函數(shù)的值,屬于中檔題.18、(1);(2).【解析】(1)由題意列關(guān)于,,的方程,聯(lián)立方程組求得,,,則橢圓方程可求;(2)分直線軸與直線l不垂直于x軸兩種情況討論,當(dāng)直線l不垂直于x軸時,設(shè),,直線l:(,),聯(lián)立直線方程與橢圓方程,消元由,得到,再列出韋達(dá)定理,由則,解得,再由,求出的坐標(biāo),則,再利用基本不等式求出取值范圍;【詳解】解:(1)由題意得:,,又,聯(lián)立以上可得:,,,橢圓C的方程為.(2)由(1)得,當(dāng)直線軸時,又,聯(lián)立得,解得或,所以,此時,直線的斜率為0.當(dāng)直線l不垂直于x軸時,設(shè),,直線l:(,),聯(lián)立,整理得,依題意,即(*)且,.又,,,即,且t滿足(*),,,故直線的斜率,當(dāng)時,,當(dāng)且僅當(dāng),即時取等號,此時;當(dāng)時,,當(dāng)且僅當(dāng),即時取等號,此時;綜上,直線的斜率的取值范圍為.【點睛】本題考查利用待定系數(shù)法求橢圓方程,直線與橢圓的綜合應(yīng)用,屬于難題.19、(1)單調(diào)遞增區(qū)間,無遞減區(qū)間;(2)證明見解析【解析】(1)求出函數(shù)的導(dǎo)數(shù),從而判斷其正負(fù),確定函數(shù)的單調(diào)區(qū)間;(2)根據(jù)題意可得到,進(jìn)而變形為,然后換元令,將證明的問題轉(zhuǎn)換為成立的問題,從而構(gòu)造新函數(shù),求新函數(shù)的導(dǎo)數(shù),判斷其單調(diào)性,求其最值,進(jìn)而證明不等式成立.【小問1詳解】時,,,令,當(dāng)時,,當(dāng)時,,故,則,故是單調(diào)遞增函數(shù),即的單調(diào)遞增區(qū)間為,無遞減區(qū)間;【小問2詳解】當(dāng)時,函數(shù)有兩個零點,,滿足,即,所以,則,令,由于,則,則x2=tx故,要證明,只需證明,即證,設(shè),令,則,當(dāng)時,,即在時為增函數(shù),故,即,所以在時為增函數(shù),即,即,故,即.【點睛】本題考查了利用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間以及涉及到零點的不等式的證明問題,解答時要注意導(dǎo)數(shù)的應(yīng)用,主要是根據(jù)導(dǎo)數(shù)的正負(fù)判斷函數(shù)的單調(diào)性,進(jìn)而求函數(shù)極值或最值,解答的關(guān)鍵時對函數(shù)式或者不等式進(jìn)行合理的變形,進(jìn)而能構(gòu)造新的函數(shù),利用新的函數(shù)的單調(diào)性或最值達(dá)到證明不等式成立的目的m.20、(1)單調(diào)增區(qū)間是,單調(diào)減區(qū)間是;最大值為;(2)存在,.【解析】(1)利用為的極值點求得,進(jìn)而可得函數(shù)的單調(diào)區(qū)間和最大值;(2)對導(dǎo)函數(shù),分與進(jìn)行討論,得函數(shù)的單調(diào)性進(jìn)而求得最值,再由最大值是求出的值.【詳解】解:.(1)∵,,∴,由,得.∴,∴,,,,∴的單調(diào)增區(qū)間是,單調(diào)減區(qū)間是;的極大值為;也即的最大值為.(2)解:∵,∴,①當(dāng)時,單調(diào)遞增,得的最大值是,解得,舍去;②時,由,即,當(dāng),即時,∴時,;時,;∴的單調(diào)增區(qū)間是,單調(diào)減區(qū)間是,又在上的最大值為,∴,∴;當(dāng),即時,在單調(diào)遞增,∴的最大值是,解得,舍去;綜上:存在符合題意,此時.【點睛】本題主要考查了函數(shù)的導(dǎo)數(shù)在求解函數(shù)的單調(diào)性及求解函數(shù)的最值中的應(yīng)用,還考查了函數(shù)的最值求解與分類討論的應(yīng)用,解題時要認(rèn)真審題,注意挖掘題設(shè)中的條件.21、(1);(2);(3).【解析】(1)運用拋物線的定義進(jìn)行求解即可;(2)設(shè)出直線的方程,與拋物線的方程聯(lián)立,可求得點和的縱坐標(biāo),結(jié)合直線點斜式方程、兩點間距離公式進(jìn)行求解即可;(3)利用弦長公式求得,由兩點間距離公式求得和,再解方程即可.【小問
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 智能網(wǎng)聯(lián)汽車數(shù)據(jù)平臺白皮書 -重構(gòu)數(shù)據(jù)底座:決勝智能網(wǎng)聯(lián)汽車的“AI 與軟件定義”時代 - 面向全生命周期價值變現(xiàn)的云器Lakehouse解決方案白皮書
- 2026屆上海市莘莊中學(xué)等四校生物高三上期末達(dá)標(biāo)測試試題含解析
- 2026廣東廣州中醫(yī)藥大學(xué)第三附屬醫(yī)院招聘備考題庫(第二批)完整答案詳解
- 銀行結(jié)算制度
- 財政所內(nèi)部財務(wù)制度
- 校園文化禮品財務(wù)制度
- 如何規(guī)范村級財務(wù)制度
- 禁止公款消費財務(wù)制度
- 年后財務(wù)制度
- 冷飲店財務(wù)制度
- 2026年江蘇經(jīng)貿(mào)職業(yè)技術(shù)學(xué)院單招職業(yè)傾向性測試模擬測試卷必考題
- 2026年中藥材生產(chǎn)質(zhì)量管理規(guī)范理論考試題含答案
- 北京市東城區(qū)2025-2026年高三上期末地理試卷(含答案)
- 鎮(zhèn)海區(qū)國資系統(tǒng)招聘筆試題庫2026
- 2026秋招:國家電投面試題及答案
- 智能機械與機器人全套課件
- 《2025年CSCO前列腺癌診療指南》更新要點解讀
- 膿毒癥診斷與治療臨床規(guī)范指南(2025年版)
- 國有企業(yè)財務(wù)管理制度
- 河南省鄭州市第六十二中學(xué)2025-2026學(xué)年九年級上學(xué)期第二次月考語文試題(含答案)
- BB/T 0019-2000包裝容器方罐與扁圓罐
評論
0/150
提交評論