版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2026屆安徽省黃山市屯溪一中數(shù)學(xué)高一上期末檢測模擬試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知是空間兩條不重合的直線,是兩個不重合的平面,則下列命題中正確的是A.,,B,,C.,,D.,,2.“”是“為銳角”的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既非充分又非必要條件3.若不等式對一切恒成立,那么實數(shù)的取值范圍是A. B.C. D.4.設(shè)函數(shù),,則是()A.最小正周期為的偶函數(shù) B.最小正周期為的奇函數(shù)C.最小正周期為的偶函數(shù) D.最小正周期為的奇函數(shù)5.設(shè)命題p:?x∈0,1,x>xA.?x∈0,1,x<x3C.?x∈0,1,x≤x36.若集合A={x|-2<x<1},B={x|x<-1或x>3},則A∩B=()A.{x|-2<x<-1} B.{x|-2<x<3}C.{x|-1<x<1} D.{x|1<x<3}7.已知函數(shù)在R上是單調(diào)函數(shù),則的解析式可能為()A. B.C. D.8.設(shè)函數(shù)對任意的,都有,,且當(dāng)時,,則()A. B.C. D.9.半徑為2,圓心角為的扇形的面積為()A. B.C. D.210.函數(shù)f(x)=|x|+(aR)的圖象不可能是()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知,,若與的夾角是銳角,則的取值范圍為______12.已知A、B均為集合的子集,且,,則集合________13.函數(shù)f(x)=log2(x2-5),則f(3)=______14.如圖,在三棱錐中,已知,,,,則三棱錐的體積的最大值是________.15.設(shè)函數(shù)的定義域為,若函數(shù)滿足條件:存在,使在上的值域是,則稱為“倍縮函數(shù)”.若函數(shù)為“倍縮函數(shù)”,則實數(shù)的取值范圍是_______16.若函數(shù)的定義域為R,則實數(shù)m的取值范圍是______三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知函數(shù).(1)判斷并證明的奇偶性;(2)求函數(shù)在區(qū)間上的最小值和最大值.18.已知函數(shù),)函數(shù)關(guān)于對稱.(1)求的解析式;(2)用五點法在下列直角坐標(biāo)系中畫出在上的圖象;(3)寫出的單調(diào)增區(qū)間及最小值,并寫出取最小值時自變量的取值集合19.已知集合A={x|2-a?x?2+a},B={x|(1)當(dāng)a=3時,求A∩B,A∪?(2)若A∩B=?,求實數(shù)a的取值范圍20.(1)已知,,求的值.(2)證明:.21.在①,②,③這三個條件中任選一個,補充在下面問題中,若問題中的a存在,求a的值;若a不存在,請說明理由.已知集合________,.若“”是“”的充分不必要條件,求實數(shù)a的取值范圍.注:如果選擇多個條件分別解答,按第一個解答計分
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】A不正確,也有可能;B不正確,也有可能;C不正確,可能或或;D正確,,,,考點:1線面位置關(guān)系;2線面垂直2、B【解析】根據(jù)充分條件與必要條件的定義判斷即可.【詳解】解:因為為銳角,所以,所以,所以“”是“為銳角”的必要條件;反之,當(dāng)時,,但是不是銳角,所以“”是“為銳角”的非充分條件.故“”是“為銳角”必要不充分條件.故選:B.【點睛】本題主要考查充分條件與必要條件,與角的余弦在各象限的正負,屬于基礎(chǔ)題.3、D【解析】由絕對值不等式解法,分類討論去絕對值,再根據(jù)恒成立問題的解法即可求得a的取值范圍【詳解】根據(jù)絕對不等式,分類討論去絕對值,得所以所以所以選D【點睛】本題考查了絕對值不等式化簡方法,恒成立問題的基本應(yīng)用,屬于基礎(chǔ)題4、D【解析】通過誘導(dǎo)公式,結(jié)合正弦函數(shù)的性質(zhì)即可得結(jié)果.【詳解】,所以,,所以則是最小正周期為的奇函數(shù),故選:D.5、D【解析】直接根據(jù)全稱命題的否定,即可得到結(jié)論.【詳解】因為命題p:?x∈0,1,x所以?p:?x∈0,1,x故選:D6、A【解析】直接根據(jù)交集的定義即可得解.【詳解】解:因為A={x|-2<x<1},B={x|x<-1或x>3},所以.故選:A.7、C【解析】根據(jù)條件可知當(dāng)時,為增函數(shù),在在為增函數(shù),且,結(jié)合各選項進行分析判斷即可【詳解】當(dāng)時,為增函數(shù),則在上為增函數(shù),且,A.在上為增函數(shù),,故不符合條件;B.為減函數(shù),故不符合條件;C.在上為增函數(shù),,故符合條件;D.為減函數(shù),故不符合條件.故選:C.8、A【解析】由和可得函數(shù)的周期,再利用周期可得答案.【詳解】由得,所以,即,所以的周期為4,,由得,所以故選:A.9、D【解析】利用扇形的面積公式即得.【詳解】由題可得.故選:D10、C【解析】對分類討論,將函數(shù)寫成分段形式,利用對勾函數(shù)的單調(diào)性,逐一進行判斷圖象即可.【詳解】,①當(dāng)時,,圖象如A選項;②當(dāng)時,時,,在遞減,在遞增;時,,由,單調(diào)遞減,所以在上單調(diào)遞減,故圖象為B;③當(dāng)時,時,,可得,,在遞增,即在遞增,圖象為D;故選:C.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】利用坐標(biāo)表示出和,根據(jù)夾角為銳角可得且與不共線,從而構(gòu)造出不等式解得結(jié)果.【詳解】由題意得:,解得:又與不共線,解得:本題正確結(jié)果:【點睛】本題考查根據(jù)向量夾角求解參數(shù)范圍問題,易錯點是忽略兩向量共線的情況.12、【解析】根據(jù)集合的交集與補集運算,即可求得集合A中的元素.再判定其他元素是否符合要求.【詳解】A、B均為集合的子集若,則若,則假設(shè),因為,則.所以,則必含有1,不合題意,所以同理可判斷綜上可知,故答案為:【點睛】本題考查了元素與集合的關(guān)系,集合與集合的交集與補集運算,對于元素的分析方法,屬于基礎(chǔ)題.13、2【解析】利用對數(shù)性質(zhì)及運算法則直接求解【詳解】∵函數(shù)f(x)=log2(x2-5),∴f(3)=log2(9-5)=log24=2故答案為2【點睛】本題考查函數(shù)值的求法,考查函數(shù)性質(zhì)等基礎(chǔ)知識,考查運算求解能力,是基礎(chǔ)題14、【解析】過作垂直于的平面,交于點,,作,通過三棱錐體積公式可得到,可分析出當(dāng)最大時所求體積最大,利用橢圓定義可確定最大值,由此求得結(jié)果.【詳解】過作垂直于的平面,交于點,作,垂足為,,當(dāng)取最大值時,三棱錐體積取得最大值,由可知:當(dāng)為中點時最大,則當(dāng)取最大值時,三棱錐體積取得最大值.又,在以為焦點的橢圓上,此時,,,,三棱錐體積最大值為.故答案為:.【點睛】關(guān)鍵點點睛:本題考查三棱錐體積最值的求解問題,解題關(guān)鍵是能夠?qū)⑺篌w積的最值轉(zhuǎn)化為線段長度最值的求解問題,通過確定線段最值得到結(jié)果.15、【解析】由題意得,函數(shù)是增函數(shù),構(gòu)造出方程組,利用方程組的解都大于0,求出t的取值范圍.【詳解】因為函數(shù)為“倍縮函數(shù)”,即滿足存在,使在上的值域是,由復(fù)合函數(shù)單調(diào)性可知函數(shù)在上是增函數(shù)所以,則,即所以方程有兩個不等實根,且兩根都大于0.令,則,所以方程變?yōu)椋?則,解得所以實數(shù)的取值范圍是.故答案為:16、【解析】由題意得到時,恒成立,然后根據(jù)當(dāng)和時,進行分類討論即可求出結(jié)果.詳解】依題意,當(dāng)時,恒成立當(dāng)時,,符合題意;當(dāng)時,則,即解得,綜上,實數(shù)m的取值范圍是,故答案:三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)奇函數(shù),證明見解析;(2)最小值為,最大值為.【解析】(1)利用函數(shù)奇偶性的定義證明即可;(2)設(shè),可知函數(shù)為增函數(shù),由,可得出,且有,將問題轉(zhuǎn)化為二次函數(shù)在上的最值問題,利用二次函數(shù)的基本性質(zhì)求解即可.【詳解】(1)函數(shù)定義域為,關(guān)于原點對稱,,因此,函數(shù)為奇函數(shù);(2)設(shè),由于函數(shù)為增函數(shù),函數(shù)為減函數(shù),所以,函數(shù)為增函數(shù),當(dāng)時,則,且,則,令,.所以,,.【點睛】本題考查函數(shù)奇偶性的證明,同時也考查了指數(shù)型函數(shù)在區(qū)間上最值的求解,利用換元法轉(zhuǎn)化為二次函數(shù)的最值問題是解題的關(guān)鍵,考查化歸與轉(zhuǎn)化思想的應(yīng)用,屬于中等題.18、(1),(2)詳見解析(3)單調(diào)遞增區(qū)間是,,最小值為,取得最小值的的集合.【解析】(1)根據(jù)函數(shù)的對稱軸,列式,求;(2)利用“五點法”列表,畫圖;(3)根據(jù)三角函數(shù)的性質(zhì),即可求解.【小問1詳解】因為函數(shù)關(guān)于直線對稱,所以,,因為,所以,所以【小問2詳解】首先根據(jù)“五點法”,列表如下:【小問3詳解】令,解得:,,所以函數(shù)的單調(diào)遞增區(qū)間是,,最小值為令,得,函數(shù)取得最小值的的集合.19、(1)A∩B={x|-1?x?1或4?x?5};A∪?RB【解析】(1)a=3時求出集合A,B,再根據(jù)集合的運算性質(zhì)計算A∩B和A∪?(2)根據(jù)A∩B=?,討論A=?和A≠?時a的取值范圍,從而得出實數(shù)a的取值范圍【詳解】解:(1)當(dāng)a=3時,A={x|2-a?x?2+a}={x|-1?x?5},B={x|x2-5x+4?0}={x|x?1A∩B={x|-1?x?1或4?x?5};又?RA∪?(2)A∩B=?,當(dāng)2-a>2+a,即a<0時,A=?,滿足題意;當(dāng)a?0時,應(yīng)滿足2-a>12+a<4,此時得0?a<1綜上,實數(shù)a的取值范圍是(-∞,1)【點睛】本題考查了集合的基本運算以及不等式解法問題,注意等價變形的應(yīng)用,屬于中檔題20、(1);(2)證明見解析.【解析】(1)對已知式子分別平方相加即可求得.(2)分別求解左邊和右邊,即可證明.【詳解】(1)由,,分別平方得:,。兩式相加可得:,整理化簡得:.(2)證明:左邊.右邊,所以左邊=右邊,即原不等式成立.21、見解析【解析】首先解一元二
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 理發(fā)店場所衛(wèi)生管理制度
- 運營廠員工規(guī)范制度
- 衛(wèi)生計生財務(wù)管理制度
- 網(wǎng)絡(luò)平臺道路貨運運營管理制度
- 山茶油協(xié)會財務(wù)制度
- 企業(yè)衛(wèi)生清掃制度細則
- 渣土車運營公司管理制度
- 新鄉(xiāng)鎮(zhèn)衛(wèi)生院財務(wù)制度
- 怎樣制定村衛(wèi)生評比制度
- 學(xué)校衛(wèi)生考核管理制度
- (2025年標(biāo)準(zhǔn))彩禮收條協(xié)議書
- 賓得全站儀R-422NM使用說明書
- ASTM-D1238中文翻譯(熔融流動率、熔融指數(shù)、體積流動速率)
- 短視頻創(chuàng)作-短視頻手機拍攝與剪輯
- 2025年國家公務(wù)員考試《申論》真題及答案解析(副省級)
- 車輛掛靠駕校合同協(xié)議
- 貴州省遵義市2024屆高三第三次質(zhì)量監(jiān)測數(shù)學(xué)試卷(含答案)
- 江蘇省勞動合同模式
- 速凍食品安全風(fēng)險管控清單
- DL∕T 5342-2018 110kV~750kV架空輸電線路鐵塔組立施工工藝導(dǎo)則
- (正式版)JBT 7248-2024 閥門用低溫鋼鑄件技術(shù)規(guī)范
評論
0/150
提交評論