版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
StateofAI2026
?2026HatchWorksAI,Allrightsreserved.
Thise-bookisprotectedbycopyrightlaws.Youmaynotreproduce,share,ordistributeitwithoutpermission
fromHatchWorksAI,exceptasallowedbytheCreativeCommonslicensebelow.
CreativeCommonsLicense(CCBY-NC-ND)
ThisworkislicensedunderaCreativeCommons
Attribution-NonCommercial-NoDerivs4.0License.Youcanshareitifyougivecredit,don’tmodifyit,anddon’tuseitcommercially.
Formoreinfo,visit:/licenses/by-nc-nd/4.0
Around-upofindustrystats,research,andinsightstounderstand
whereAIstands,howitgothere,andwhereit’sgoing.
Index
Introduction1
We,reSeeingtheDifferenceBetween
PromisevsProduction3
There,saGrowingNeedtoDesignforAI9
FasterDevCyclesAreForcingEveryoneto
RethinktheDiscipline15
TheAICodingWarsAreMakingWayfor
DemocratizedUse20
We,reHavingaMultimodalMoment25
TheBrowserHasBecomeaBattleground27
ModelsarePlateauing,Architecturesare
GettingSmarter31
TheBottleneckisHuman33
RegulationandGovernanceareCatching
UpandDrawingLines35
AIisGoingRogueandItHasSecurity
Implications37
ExpertCommentarybyOmarShanti40
Introduction
Atthestartoflastyear,thenarrativewasthat2025wouldbetheyearofproductionandwherepilotprojectswouldgraduateintofull-scaleAIsystems.
1
Butaswemoveinto2026,therealityismorecomplicated.
Infact,aviralMITstudyrevealed95%ofenterprisegenerativeAI
pilotprogramsfailtodelivermeasurableP&Limpact.Adoptionishigh,butexecutionishard,especiallyinenterprisesettingswheresuccesshingesonpeople,process,andintegration,notjusttooling.Interestingly,thestudyhighlightsastrategicadvantagefor
companiesthatpurchaseAItoolsorpartnerwithspecializedvendors.
Theseapproachessucceedabout67%ofthetime,comparedtojust33%successforinternallybuiltsolutions.Thatsaid,anothereye-catchingmetricreinforcesthewidespreadindividualuptakeofAI:ChatGPTisontracktoreach1billionuserswithitsuserssending2.5Bpromptseachday.
AIisclearlymainstreamattheindividuallevel.
Butintheenterprise,adoptionoftenfeelslesslikedigitaltransformationandmorelikechangemanagement.
Thattensionbetweenpotentialandrealityiswhatthislookinto
2026explores.Itpicksupwhereour2025reportleftoff,examininghowfarAIhasprogressedandhowfaritstillhastogo.It’sbrokenintotenobservations,andcappedoffwithcommentaryandfuturepredictionsfromourCTO,OmarShanti.
Let,sgetintoit.
2
We’reSeeing
theDifference
BetweenPromise
vsProduction
Armedwithreasoningcapabilities,accesstotools,andmemorypersistence,AIagentspromisedafuturewheresoftwarecouldthink,act,andexecuteonourbehalf.
Whatwe’veseeninsteadisawideninggapbetweenwhat
agentscoulddoandwhattheyactuallydeliverinpractice.It’sleftuswondering,areweexpectingtoomuchtoosoon?
Butonethingisforsure…
3
AgentHypeWasTemperedEarly
Theclearestsignalthatagenthypehasoutpacedreality
camefromOpenAIitself.Their“CupcakeTest”,ashowcaseof
ChatGPT’sAgentMode,quicklywentviralforthewrongreasons.
Whatshould’vebeenaroutinetask(orderingfoodonline)
devolvedintoa58-minutemessofmisfires,hallucinated
locations,andasurrealsuggestiontovisitacupcakestandatabaseballstadiumthatdidn’texist(Futurism,NateJones).
What’sworryingisthatwhathappenedisn’tprovingtobeapattern.
Acrossplatforms,general-purposeagentsarestrugglingwith
real-worldcomplexity.Tooluseisinconsistent.Memoryfadesorconflicts.Andplanningbreaksunderevenmoderateambiguity.AsUtkarshKanwatputsitinWhyI’mBettingAgainstAIAgentsin2026(DespiteBuildingThem):
“Errorcompoundingmakes
autonomousmulti-stepworkflowsmathematicallyimpossibleat
productionscale.”
Agentsarestillimpressive…innarrowbands.Butthey’reunreliableinproductionwithouttightorchestrationandguardrails.
Thathasn’tstoppedthefloodofVC-backedagentstartupsandbreathlessdemos.Butthemarketisshifting.Enterpriseswereasking,Canwebuildanagent?Nowit’s,Willitactuallyworkinourenvironment?
5
4
Goodnewsthough.Wearemakingprogressonthatfront.
Themostpromisingstrategiescenteronstructure.Teamsaresucceedingwhentheybreaktasksintosmaller,directedsteps,reducingerrorratesand
givingagentsclearerguidance.OthersareblendingprobabilisticAIwithdeterministicsystems,usingAIonlywhereitaddsvalueandrelyingonrule-basedlogicelsewhere.
Mostimportantly,specialized,workflow-centricagentsarealreadyprovinguseful.
Andthisisthekeyshiftheadinginto2026:
enterprisesarerealizingthatgeneral-purpose
agentsaresimplytoobroad,tooopaque,andtoobrittletotrustinproduction.Whatisworkingaresmaller,purpose-builtagents—narrowbydesign,tightlyscoped,auditable,andalignedtospecificworkflows.Theseagentshavelowererrorrates,clearerexplainability,andfareasiergovernance,whichiswhythey’realreadydeliveringvaluewhilegeneral-purposeagentscontinuetostruggle.
7
6
So,thehypemayhavecooled,butthesignalisgettingstronger.TypesofAgents
Onereasonagentsarestrugglingtoscale?They’vebeentreatedlikeamonolith.
Inreality,therearedifferenttypesofagents,andeachis
suitedtodifferentkindsoftasks.ReuvenCohen’sframeworkisespeciallyusefulhere,breakingagentsdownintocategoriesbasedonhowtheycoordinate:
Swarmagentsoperateindependently,followinglocalrules.Greatforadaptive,decentralizedtasks,badforconsistency.
Meshagentscollaboratethroughpeer-to-peernetworks.They’reresilientandscalable,but
complextomanage.
Hive-mindagentsactasasingleintelligence.They’refastandunified,butbrittleunder
failure.
Workflow-centricagentsfollowstructuredtasksequences.They’reidealforenterpriseusecaseswheretraceabilityandreliabilitymatter.
Infrastructure,NotIntelligence,istheRealBreakthrough
We’renowseeingtheriseofinfrastructureprotocolslikeMCPandA2A.Thisisanefforttogivetheguardrailsandclaritytoagentsneededtoscale.
Therearetwotobeawareof:
MCP(ModelContextProtocol),introducedbyAnthropic,isgainingtractionasthe“USB-CforAI.”Itstandardizeshowmodelsconnecttotools,APIs,anddatasources—eliminatingbrittle,bespokeintegrations.Forenterprises,MCPpromisesfasterbuilds,richercontext,andfewerdevheadaches.
However,italsointroducesnewrisks,particularlyintermsofsecurityandpromptinjection.
A2A(Agent-to-AgentCommunication),launchedby
Google,tacklesthenextlayerbyenablingagentstosecurelydiscoverandcollaborateacrossenvironments.Itprovidesacommonprotocolforagentidentity,messaging,andtaskhandoff,whichisessentialformulti-agentworkflows.
Together,theseprotocolssignaltheriseofagent
interoperabilityasadefiningrequirement.Wherebefore
thereweresiloedassistants,therearenownetworkedagentecosystems,wherecollaborationisbakedinattheprotocollevel.
9
8
OrchestrationistheGlueMakingAgentsFitforPurpose
IfprotocolslikeA2AandMCParebringingguardrails,it’s
orchestrationthat’smakingthesehigh-potentialagentsuseful.Platformsliken8n,LangChain,andemergingorchestration
layersarebecomingessentialforproduction-gradesystems.
Andit’sbecausetheyhandlethemess:contextmanagement,retries,toolchaining,securityboundaries,andintegrationwithlegacysystems.
Thisiswheremostenterpriseagentstrategiesliveordie.Sotakenoteifyouwanttouseagentssuccessfullyinyourorg.
Wecertainlyhave.
10
There’saGrowing
NeedtoDesignforAI
GenerativeAI,along
thenewandemergent
modalitiesweuseitin,isforcingtheneedtorethinkhowwedesignforthe
11
user.Especiallyasanewusertypeentersthefray.
AIAGENTSASUSERS
“User”:ahuman
interactingwithascreen.
User:ahumanorAI
agentinteractingwithascreen.
Withthedefinitionofuserexpanding,wenowhavetwotypestodesignfor:
Humans,whoneedintuitiveinterfaces,clarity,andfeedback.
Agents,thatneedstructureddata,predictablepatterns,andmachine-readablecontext.
Ignoringtheagentlayerriskscreatingbrittlesystemsthatworkfineforpeoplebutconfuseorfailagents.Andthat’sagrowingliabilityasmorecoreoperationsbecomeagent-driven.
12
InvisibleUXisAlreadyUnderway
InvisibleUXiswhathappenswhensoftwarestartsprioritizingstructure,clarity,andoutcomesoverhuman-facingelementslikebuttons,layouts,andscreens.
TheshifttoinvisibleUXisalreadyshowingupinhowteamsarebuilding:
ProductstrategistFelixHaashasbeenpubliclydocumentingtheriseofintent-drivendesign,predictingthatInvisibleUX“isgoingtochangehowwedesignproducts,forever.”(FelixHaasonLinkedIn)
AtBox,CEOAaronLevierecentlysharedhowtheirproduct
designnowassumesAIagentswillinteractdirectlywiththeir
systems—shapingfeatures,notjustaugmentingthem.(LevieonLinkedIn)
13
EvenEricSchmidt,formerGoogleCEO,notedthattraditionaluserinterfacesarefading,sayingbluntly:“Userinterfacesaregoingtogoaway.”(EricSchmidtviaLinasBeliunas)
SEOisChanging
Justlikedesign,contentisbeingreadtoo.Theactualwordsonthepagenowneedtospeaktohumanreadersandthemachineshumansturntoforquickanswers.
ToolslikeClaude,ChatGPT,andPerplexityarealready
combingthroughyourcontent,lookingformeaning,clarity,andconfidencesignalstodecidewhattosummarizebacktousers.
14
It’spushingSEOprosintounfamiliarterritory.Whiletraditionaltechniqueslikekeywordstrategyandbacklinkingstillmatter,there’sagrowingefforttounderstandhowtoshowupinthisnewLLM-drivenlayerofsearch.It’searly,uncharted,andfullofopenquestions,butexperimentationisalreadyunderway.
HerearethetermssittingalongsideSEOtoday:
GEO(GenerativeEngineOptimization):
OptimizingforhowLLMsgeneratecontentfromyoursource.
AEO(AnswerEngineOptimization):
Structuringinformationtosurfaceasdirect,high-confidenceanswers.
AIO(AgentInteractionOptimization):
Designingsitesforagentsthattakeactiononthecontenttheyretrieve.We’restillearly.There’snodominantplaybook,butasBenGoodey,FounderoftheSEOagencySpicyMargarita,says,
“GEOisanaturalareato learnforSEOswhowanttofutureprooftheircareers.”
BenGoodey
Founder@SpicyMargarita,SEO&contentproductionagency
We’rebettingthatmoreandmoreSEOteamswillbeginshiftingtheirenergytowardLLM-focusedstrategiesbecausethat’s
wherethesearchexperienceisheaded.
15
ToBeSeen,YouNeedtoBeParsable
SohowcanyoudesignforAI?
Makeitstructured,context-rich,andmachine-readable:
Useclearstructures,likeschema
markup,logicalheadings,andconsistentformats.
Directlyaddressuserquestionswithspecific,well-contextualizedanswers.
Includemetadataandcuesthathelpagentsunderstandintentandrelevance.
Remainaccessibleandusefulto
humanuserswhilelayeringinclarityformachineparsing.
16
FasterDevCyclesAreForcingEveryoneto
RethinktheDiscipline
WithAI,Developersareshippingfaster,experimentingmoreoften,andleaningonassistantstohandleboilerplateor
suggestalternatives.ButasspeedrampsupinsidetheIDE,it’sexposinganewkindoffrictionoutsideofit.
Thewayteamsplan,manage,andcollaboratewasn’tbuiltforthispace.Sothingsareshiftingandfast.Twoofthebiggestchanges:
?Amovefrompromptengineeringtocontextengineering
?Teamdynamicsthatarestartingto
bendaroundthespeedofdevelopment
17
ContextEngineering>
PromptEngineering
TheearlywaveofAIadoptionmadepromptengineeringthe
headlineskill.Teamswereracingtomastertheartofphrasing.However,assystemshitproduction,controllingtheinputs
thatshapeamodel’sworldbeforethepromptisevenwrittenbecomesmoreimportant.
InApril,AndrejKarpathysummeditupsimply:
“It,sallaboutthecontext.”
Andtheindustryhasfollowedthatthread.LangChain’sTheRiseofContextEngineeringlaidouthowtheworkofmemorymanagement,retrieval,grounding,andorchestrationis
becomingcentraltoreal-worldLLMperformance.Astheyputit:“contextisnowthesystemboundary.”
PhilSchmid,inarecentguide,breaksthisdownintopracticalarchitectures:managingsessionmemory,chainingtools,constraininghallucinationrisk,andbuildingpersistentgroundingviaRAG.Hedoesn’tdownplaypromptingthough;hereframesitasjustonelayerinamuchdeeperstack.
Fromwhatwe’veseenacrossotherteams(andinside
HatchWorksAI),thebiggestimprovementscomefrom
intentionalcontextcontrol,wherewhat,sretrievedmattersmorethanwhat,sprompted.
18
ContextEngineering
19
NewRoles,NewRatios
AIhasaccelerateddeveloperoutput,butthetraditional
developerteamisntstructurallyequippedtokeepup.Productmanagers,designers,andQArolesareoftencaughtflat-
footed,strugglingtokeeppacewithideationanditerationcyclesthatnowhappeninhours,notsprints.
AndrewNgflaggedthisshiftinarecentYCtalk,notingthat
asengineeringspeedjumps(oftenanorderofmagnitudeforprototyping),traditionalstaffingratios—historically~1PMper67engineersarestartingtobreakdown.
We’renowseeing:
Tighter,developer-ledpodswithembeddedorchestrationoragentopsroles.
PMsfocusedlessonspecsandmoreonvalidation,riskmanagement,andorchestrationoversight.
Greaterdemandfor“glue”rolesthatcanbridgeAIcapabilitieswithbusinessoutcomes.
20
AtHatchWorksAI,we’vetestedandrefinednewteam
structuresinourGenerative-DrivenDevelopment(GenDD)model.Insteadofthetraditionalpyramid,weorganizeintoAI-nativepodstight-knitteamsof35workingcontinuouslywithAI.
Inourguide,TheAIDevelopmentTeamoftheFuture,weintroducerolessuchas:
AgenticProductStrategist
FocusingonintentandAI-aware
specifications.
AgenticEngineer
DesigninghowAI
executesthework,
notjustwriting
code.
AgenticQA
BuildingqualitychecksintocontinuousAI-poweredworkflows.
Wereseeingthatifyouupdateyourtoolsbutnotyourteam
21
design,youlimitbothperformanceanddelivery.OrganizationalagilityisascriticalasAIagility.
TheAICodingWarsAreMakingWayforDemocratizedUse
Codingtoolsareinthemiddleoftheir
ownarmsracetoowntheAI-native
developmentenvironment.Andwiththis,codingisdemocratized.
22
TheIDE&CodingAssistantWar
Inthiswar,thekeyplayersarestackingtheirmoves.
Windsurf,oncearisingstarasanAI-nativeIDE,drewa$3B
acquisitionbidfromOpenAIthatultimatelyexpired.Overthefollowingweekend,Googleswoopedinwitha$2.4Bacqui-
hireofWindsurf’stopexecs.Andshortlyafter,Devin(from
Cognition)movedtoacquiretheremainingIPandengineeringtalent.
It’sadramaticmoveinabroaderwaveofactivityreshapinghowdeveloperswrite,test,anddeploycodealongsideagentstakingthemfromautocompletehelperstofullAI-poweredIDEs.
Here,swherethingsstand:
DevinacquiresWindsurf:InJuly,Cognition’sAIcodingplatformDevinacquiredtheAI-nativeIDEWindsurf—aclearsignalintheracefortheAI-enhanceddevelopmentenvironment.
23
ClaudeCodegainsexplosiveusage:AsofJuly6th,Anthropic’sterminal-basedtoolservesover115,000developersand
processesapproximately195millionlinesofcodeperweek—amilestonefourmonthspost-launch.Giventhatwasovera
monthago,thosenumbershavelikelygrownexponentially.
AWSlaunchesKiro:AWS’snewagenticIDE,Kiro,breaksdownspecsintoexecutabletasksandsupportsend-to-endAI-assisteddevelopment,completewithgovernancecontrols.
Google,sProjectIDXrebrandedasFirebaseStudio:
IntegratingGeminiAIforfull-stackdevelopmentinsideacloud-basedIDE,withtemplates,emulators,andworkflowintegrationformultiplelanguages.
24
TheVibeCodingExplosion
AIdevelopmentisbecomingmoreaccessible,andtools
likeLovablearedesignedforpeoplewhodon’twritecode.
Insteadoftargetingdevelopers,they’vebuiltaninterfaceforanyonewhowantstobuildsoftwarewithAIguidance.It’s
visual,intuitive,andremovesmostofthecomplexitybehindimplementation.
Thatstrategyhaspaidoff.Lovablereached$100MinARRinjusteightmonthsbyfocusingonadifferentaudience:therestofus.Now,anyonecanbuildwithAI,evenafounder
25
withnoengineeringbackground.
SeeVibeCodinginAction
Vibecodingcouldhelpyoumovefromideatoprototype
inminutes.Butleftunchecked,itcanalsocreatefragile
prototypes,securitygaps,andone-offexperimentsthatneverscale.Withtherightmethodology,though,itbecomesa
powerfulwaytoletnon-developerscontributetobuildingrealsolutions.
That’sexactlywhatwesetouttoshowinourExecutivePrimeronVibeCoding.Inthislivesession,we:Builtaworking
solutionfromscratchusingtoolslikeCursor,Lovable,andv0
Walkedthroughwherevibecodingshinesandwhereitbreaksdown
Sharedtheguardrailsleadersshouldconsiderbeforeenablingtheirteams
Showedhowtomovefromone-offexperimentstoproduction-readyoutcomes
Ifyou’vebeenwonderinghowvibecodingactuallyworksin
practice,orwhatittakestomakeitsucceedbeyonddemos,thisrecordingisthebestplacetostart.
Watchtherecording
26
We’reHavingaMultimodalMoment
Earlierintheyear,mostenterpriseteamstreatedAIvideo
toolsasanovelty.Theycouldimpressindemos,butrealusecasesfeltjustoutofreach.
That,schanged.
Multimodalsystems,particularlyvideo,arestartingto
showsignsofproductionreadiness.Google,sVeo3.1now
generateshigh-resolution,sound-syncedvideooutputsthatmeetcommercialqualitythresholds.AccordingtoCNET,over100millionvideoshavebeengeneratedwithVeosofar,withroughly6milliontiedtoenterprisecampaigns.
27
Adoptionisfollowing.CanvahasintegratedVeodirectlyintoitscreativesuite,andbrandslikeeToro,BarkleyOKRP,andRazorfisharealreadyusingittoscalecampaignassetsacrosschannels.
EvenNetflixisapplyinggenerativevideoinproduction.Inits
newArgentinesci-fiseriesElEternaut,thestudiousedAItoolstorenderfullVFXsequencesandcuttimelinesbymorethan10x.
Whatdoesthismean?
Multimodalityis
becomingaviable
deliverylayerwhere
teamswithoutdeep
mediaresourcescanbuild,test,andlaunchfullexperienceswithAIintheloop.
28
SoraChangestheScaleofWhat’s
Possible
If2025wastheyearmultimodalbecameviable,2026willbetheyearitbecomescinematic.
OpenAI’sSora2marksastructuralleap—nolongertext-to-videoasexperiment,buttext-to-cinemaasproductionlayer.
Launchedpubliclyinlate2025,Sora2cangenerate
minute-long,photorealisticsequenceswithsynchronizedaudio,fluidcameramotion,andconsistentspatial
reasoning.Whatoncerequiredentireproductionteamsnowfitsinsideasingleprompt.
29
MicrosofthasalreadyintegrateditintoBing’sVideoCreator,bringingtext-to-videodirectlytomillionsofusers(TheVerge).
Creativeagenciesareprototypingstoryboardsandproductspotsinhoursinsteadofweeks(TheGuardian),whilepost-productionteamstreatitasanewkindofpre-vizpipeline—cheaper,faster,endlesslyeditable.
30
Buttheculturalshockarrivedjustasfast.
Withinweeks,Sora-generatedclipsflooded
socialmediafeedsandnewscycles:
“AnimalsonTrampolines”
compilationsfloodedInstagramandYouTubeReels
“ElderlyWomanFeedingaBearonHerPorch”(44Mviews,TikTok)
Apassengerjetscenefeaturinga
kangaroofooledmillionsbeforebeingconfirmedsynthetic.
Asynthetic“celebrityreunion”
videousingAIgeneratedlikenessesofdeceasediconsspurredrights
discussions.
31
TheBrowserHas
BecomeaBattleground
ThebrowserusedtobeGooglesturf.Itsmonopolyeven
manifestedintogooglebeingmadeaverbin2006.ButAI-
nativebrowsersaresteppingintotheringandchallengingthedefaultnarrativeofwebnavigation.
32
CometbyPerplexityisoneoftheclearestexamples:an
AI-nativebrowserthatembedschat-drivendiscoveryand
summarizationdirectlyintotheinterface.Insteadoftraditionalsearch,usersqueryandgetimmediate,synthesizedinsights.
Meanwhile,OpenAIalsolauncheditsownbrowsercalledChatGPTAtlas.ItsgoalistorethinkwhatitmeanstobeabrowserwithAIatthecore.
Google,nottobeoutdone,isbeginningtoelevateitsAIModetobeacentralpartoftheexperienceasitgoesallinonAI.
Thesedevelopmentsareredefininghowpeoplefindand
processinformation,shiftinguserintentawayfromsearch
33
enginesandtowardagent-drivenexplorationfundamentallyrethinkingwhat“browsing”means.
WhyThisMatters
Whenyourbrowseranticipatesyourintent(andoffersstreamlined,answer-firstinteraction),itbecomesalayerofcontroloverhowpeopleaccessinformation.
Forenterprises,thatmeans:
?Rethinkingvisibilityandoptimizingforagent-ledbrowsing.
?DesigninginteractionsthatfunctioninminimizedUIenvironmentswherecontentneedstobescannable,
modular,andcontext-richforAIprocessing.
?Consideringhow“browsing”
becomesanAPIcall,nota
clickstreamandwhatthatmeansforcontentstrategyandengagement
metrics.
34
ModelsarePlateauing,Architecturesare
GettingSmarter
Bigmodelreleasesusedtopromisemajorleaps.Largermodelsmeantbetterperformance.Butthroughout2025,thatequationstartedtobreakdown.OpenAIandGoogleareevenmissing
deadlinesfornewmodelreleasesbecausetheyhaven’tgottenwheretheyneedtowithperformance.They’rehittingscalingwalls,forcingapivottosmarterarchitecture,notjustsize.
35
WhatWe’reSeeing
GPT-5:Evolution,NotRevolution:OpenAI’smodeldelivers
strongerreasoningandwidercontexthandling—upto256k
tokens—butuserfeedbackandexpertanalysisdescribe
theupgradeasmeasured,notdramatic.Themostnotable
improvementsareinreliabilityandcost-efficiency,notraw
capability.(Tom’sGuide)Eventhelatest5.1modelhighlightsitsmoreconversationalnaturevshowwellthemodelperforms
(
/index/gpt-5-1/
)
ScalingIsn’tDrivingInnovationAnymore:TheFinancial
TimescautionsthatGPT-5’smodestimpactillustratesbroaderlimitsonscaling—constraintsindata,compute,anddiminishingreturnsmake“modelsize”anincreasinglyuncompetitive
strategy.
EnterpriseStrategyIsBecomingArchitectural:Techradar
callsthisthe“enterpriseAIparadox”:withoutdeeperintegrationandorchestration,largemodelsalonedon’tdelivermeasurablevalue.Instead,systemsbuiltaroundmodularagentstructures,sharedmemory,andstreamingdataaregainingtraction.
Allthisistosay,thebiggestgainswillcomefromsmarterintegration,notchasingeverynewmodelrelease.Evenifthemodelsdon’tgetasingleiotabetter,enterprisesstill
havemassiveuntappedpotentialinhowtheyapplytoday’scapabilities.
36
TheBottleneckisHuman
Bynow,thelimitingfactorin
enterpriseAIispeople.More
specifically,howteamsthink,
behave,andwork.We’renoticingthatteamsdon’tnecessarily
haveatechgap,theyhaveahabitgap.
Weseethisinwhat’snow
beingcalledthe“blankcanvasproblem”:whenAIcando
anything,whatdoyouactuallydo?Leadersintroducetools
expectingtransformation,butwithoutnewpatternsofuse,adoptionstalls.
TobiLütke,CEOofShopify,
callsit“ReflexiveAIUsage”—aninternalizedinstincttoreachforAInaturallyandoften.Butmostteamsaren’tthereyet.
37
They’restuckinoldworkflows,waitingforpermissionor
instructions.Thefixishands-onexperimentation,training,andrepetition—somethingwe’veembeddedintoourownprograms:
LearnmoreatHatchW/ai-training-for-teams
LearnmoreatHatchW/executive-ai-training
GetYourCustomAITrainingPlan
Reachouttoplanyourhands-onworkshop.
Tellusaboutyourteam,we’lldotherest.
GetStartedToday
38
RegulationandGovernanceareCatchingUpandDrawingLines
Asmodelreleasesslow,regulationisfinallyspeedingup,and
thefocusisshifting.Insteadofgoverningmodelsize,lawmakersarenowwatchinghowAIisused.
We’reseeingarealsplitinglobalstrategy:
EU
TheAIActisnowinthe
finalstages,settingstrict
classifications,risktiers,andcompliancestandardsfor
AIsystems.Enforcementisexpectedtobeginin2026.
U.S.
TheTrumpadministration’sAIActionPlantakesadifferenttack—pivotingtoward
innovation,infrastructureinvestment,andvoluntaryframeworksoversweepingrestrictions.
39
EnterprisesareexpectedtotaketheleadonAIgovernance—becausemostrisksemergenotfromthemodelitself,buthowit’sapplied.
That’swhyinternalgovernanceisbecomingfoundationalinfrastructure.ToscaleAIsafely,organizationsareputtingguardrailsinplace:
AIgatewaystocontrolwhatmodelscanaccessandwheretheycanoperate.
Agentidentitysystemstotrackwhateachagentsees,does,andchanges—essentialforauditability.
CentralizedpoliciesandcontrolstoensureAIexperimentationdoesn’toutpaceoversight.Inpractice,thismeansAIneedstobetreatedlikeanyotherenterprisesystem:managed,monitored,andmadeaccountable.
40
AIisGoingRogueandItHasSecurityImplications
Anthropic’srecentresearchonagenticmisalignmenthighlightsjusthoweasilyanetworkofwell-intentionedagentscanspiralintounintendedandevenunsafeoutcomes.Whenagents
interactincomplexenvironments,evenslightmisalignmentcancompound.
41
Insimulatedenterpriseenvironments,
evenwithharmlessgoalsassigned,modelsfromacrosstheAIecosystem—Claude,
Gemini,Grok,andmore—showedastartlingpropensityforinsiderbehavior:
Theyblackmailedhypotheticalexecutives
Leakedsensitiveinformationtocompetitors
Actedtopreservetheirownoperationalcontinuity
Theseactionsweren’trandom.Themodelsappearedto
strategicallychooseharmfulbehaviorswhe
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 低壓配電室巡檢制度
- 人行大集中統(tǒng)計(jì)制度
- 主板新股停牌制度
- 中學(xué)安全檢查制度
- 二手車(chē)交易培訓(xùn)課件
- 三臺(tái)縣人民法院關(guān)于2026年招聘司法輔助人員的備考題庫(kù)及一套參考答案詳解
- 2025至2030中國(guó)裝配式建筑行業(yè)政策環(huán)境與市場(chǎng)增長(zhǎng)潛力研究報(bào)告
- 二建基礎(chǔ)知識(shí)課件
- 2025至2030中國(guó)醫(yī)用敷料行業(yè)發(fā)展趨勢(shì)與投資價(jià)值評(píng)估報(bào)告
- 二十大信息技術(shù)
- 電梯加裝鋼結(jié)構(gòu)施工方案
- 鈉電池專(zhuān)業(yè)知識(shí)培訓(xùn)課件
- 安徽控告申訴知識(shí)競(jìng)賽(含答案)
- 《城市軌道交通初期運(yùn)營(yíng)客流預(yù)測(cè)要求》
- 垂直大模型項(xiàng)目報(bào)告
- 子宮腺肌癥護(hù)理
- 鄉(xiāng)鎮(zhèn)農(nóng)業(yè)培訓(xùn)課件
- 設(shè)計(jì)措施方案模板(3篇)
- Dahua大華NYX5400BX系列紅外非制冷焦平面熱成像機(jī)芯使用說(shuō)明書(shū)
- 《PLC應(yīng)用技術(shù)項(xiàng)目教程》課件項(xiàng)目一
- 中醫(yī)學(xué)針灸考試題及答案
評(píng)論
0/150
提交評(píng)論