版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
廣東省梅州市五華縣2026屆數(shù)學(xué)高二上期末調(diào)研模擬試題注意事項(xiàng)1.考生要認(rèn)真填寫考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無(wú)效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.△ABC的兩個(gè)頂點(diǎn)坐標(biāo)A(-4,0),B(4,0),它的周長(zhǎng)是18,則頂點(diǎn)C的軌跡方程是()A. B.(y≠0)C. D.2.若點(diǎn)在橢圓的外部,則的取值范圍為()A. B.C. D.3.若命題“對(duì)任意,使得成立”是真命題,則實(shí)數(shù)a的取值范圍是()A. B.C. D.4.若,則下列結(jié)論不正確的是()A. B.C. D.5.設(shè)點(diǎn)P是雙曲線,與圓在第一象限的交點(diǎn),、分別是雙曲線的左、右焦點(diǎn),且,則此雙曲線的離心率為()A. B.C. D.36.已知,是橢圓C的兩個(gè)焦點(diǎn),P是C上的一點(diǎn),若以為直徑的圓過(guò)點(diǎn)P,且,則C的離心率為()A. B.C. D.7.已知長(zhǎng)方體的底面ABCD是邊長(zhǎng)為8的正方形,長(zhǎng)方體的高為,則與對(duì)角面夾角的正弦值等于()A. B.C. D.8.若過(guò)點(diǎn)(2,1)的圓與兩坐標(biāo)軸都相切,則圓心到直線的距離為()A. B.C. D.9.若數(shù)列{an}滿足……,則稱數(shù)列{an}為“半差遞增”數(shù)列.已知“半差遞增”數(shù)列{cn}的前n項(xiàng)和Sn滿足,則實(shí)數(shù)t的取值范圍是()A. B.(-∞,1)C. D.(1,+∞)10.圓與圓的位置關(guān)系是()A.內(nèi)切 B.相交C.外切 D.相離11.已知命題對(duì)任意,總有;是方程的根則下列命題為真命題的是A. B.C. D.12.傾斜角為45°,在軸上的截距是的直線方程為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若圓平分圓的周長(zhǎng),則直線被圓所截得的弦長(zhǎng)為_(kāi)___________14.如圖,在直三棱柱中,,為中點(diǎn),則平面與平面夾角的正切值為_(kāi)__________.15.如圖,在正四棱錐中,為棱PB的中點(diǎn),為棱PD的中點(diǎn),則棱錐與棱錐的體積之比為_(kāi)_____16.在的展開(kāi)式中項(xiàng)的系數(shù)為_(kāi)_____.(結(jié)果用數(shù)值表示)三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)如圖所示,在直三棱柱中,是等腰直角三角形,(1)證明:;(2)若點(diǎn)E是棱的中點(diǎn),求平面與平面所成銳二面角的余弦值18.(12分)已知點(diǎn),橢圓:的離心率為,是橢圓的右焦點(diǎn),直線的斜率為,為坐標(biāo)原點(diǎn).設(shè)過(guò)點(diǎn)的動(dòng)直線與相交于,兩點(diǎn)(1)求橢圓的方程(2)是否存在直線,使得的面積為?若存在,求出的方程;若不存在,請(qǐng)說(shuō)明理由19.(12分)某校高三年級(jí)進(jìn)行了一次數(shù)學(xué)測(cè)試,全年級(jí)學(xué)生的成績(jī)都落在區(qū)間內(nèi),其成績(jī)的頻率分布直方圖如圖所示,若(1)求a,b的值;(2)若成績(jī)落在區(qū)間內(nèi)的人數(shù)為36人,請(qǐng)估計(jì)該校高三學(xué)生的人數(shù)20.(12分)設(shè)橢圓方程為,短軸長(zhǎng),____________.請(qǐng)?jiān)冖倥c雙曲線有相同的焦點(diǎn),②離心率,③這三個(gè)條件中任選一個(gè)補(bǔ)充在上面的橫線上,完成以下問(wèn)題.(1)求橢圓的標(biāo)準(zhǔn)方程;(2)求以點(diǎn)為中點(diǎn)的弦所在的直線方程.21.(12分)男子10米氣步槍比賽規(guī)則如下:在資格賽中,射手在距離靶子10米處,采用立姿,在105分鐘內(nèi)射擊60發(fā)子彈,總環(huán)數(shù)排名前8名的射手進(jìn)入決賽;在決賽中,每位射手僅射擊10發(fā)子彈.已知甲乙兩名運(yùn)動(dòng)員均進(jìn)入了決賽,資格賽中的環(huán)數(shù)情況整理得下表:環(huán)數(shù)頻數(shù)678910甲2352327乙5502525以各人這60發(fā)子彈環(huán)數(shù)的頻率作為決賽中各發(fā)子彈環(huán)數(shù)發(fā)生的概率,甲乙兩人射擊互不影響(1)求甲運(yùn)動(dòng)員在決賽中前2發(fā)子彈共打出1次10環(huán)的概率;(2)決賽打完第9發(fā)子彈后,甲比乙落后2環(huán),求最終甲能戰(zhàn)勝乙(甲環(huán)數(shù)大于乙環(huán)數(shù))的概率22.(10分)(1)解不等式;(2)若關(guān)于x的不等式解集為R,求實(shí)數(shù)k的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】根據(jù)三角形的周長(zhǎng)得出,再由橢圓的定義得頂點(diǎn)C的軌跡為以A,B為焦點(diǎn)的橢圓,去掉A,B,C共線的情況,可求得頂點(diǎn)C的軌跡方程.【詳解】因?yàn)椋?,所以頂點(diǎn)C的軌跡為以A,B為焦點(diǎn)的橢圓,去掉A,B,C共線的情況,即,所以頂點(diǎn)C的軌跡方程是,故選:D.【點(diǎn)睛】本題考查橢圓的定義,由定義求得動(dòng)點(diǎn)的軌跡方程,求解時(shí),注意去掉不滿足的點(diǎn),屬于基礎(chǔ)題.2、B【解析】根據(jù)題中條件,得到,求解,即可得出結(jié)果.【詳解】因?yàn)辄c(diǎn)在橢圓的外部,所以,即,解得或.故選:B.3、A【解析】由題得對(duì)任意恒成立,求出的最大值即可.【詳解】解:由題得對(duì)任意恒成立,(當(dāng)且僅當(dāng)時(shí)等號(hào)成立)所以故選:A4、B【解析】由得出,再利用不等式的基本性質(zhì)和基本不等式來(lái)判斷各選項(xiàng)中不等式的正誤.【詳解】,,,,A選項(xiàng)正確;,B選項(xiàng)錯(cuò)誤;由基本不等式可得,當(dāng)且僅當(dāng)時(shí)等號(hào)成立,,則等號(hào)不成立,所以,C選項(xiàng)正確;,,D選項(xiàng)正確.故選:B.【點(diǎn)睛】本題考查不等式正誤的判斷,涉及不等式的基本性質(zhì)和基本不等式,考查推理能力,屬于基礎(chǔ)題.5、C【解析】根據(jù)幾何關(guān)系得到是直角三角形,然后由雙曲線的定義及勾股定理可求解.【詳解】點(diǎn)到原點(diǎn)的距離為,又因?yàn)樵谥校?,所以是直角三角形,?由雙曲線定義知,又因?yàn)?,所?在中,由勾股定理得,化簡(jiǎn)得,所以.故選:C.6、B【解析】根據(jù)題意,在中,設(shè),則,進(jìn)而根據(jù)橢圓定義得,進(jìn)而可得離心率.【詳解】在中,設(shè),則,又由橢圓定義可知?jiǎng)t離心率,故選:B.【點(diǎn)睛】本題考查橢圓離心率的計(jì)算,考查運(yùn)算求解能力,是基礎(chǔ)題.本題解題的關(guān)鍵在于根據(jù)已知條件,結(jié)合橢圓的定義,在焦點(diǎn)三角形中根據(jù)邊角關(guān)系求解.7、A【解析】建立空間直角坐標(biāo)系,結(jié)合空間向量的夾角坐標(biāo)公式即可求出線面角的正弦值.【詳解】連接,建立如圖所示的空間直角坐標(biāo)系∵底面是邊長(zhǎng)為8的正方形,,∴,,,因?yàn)?且,所以平面,∴,平面的法向量,∴與對(duì)角面所成角的正弦值為故選:A.8、B【解析】由題意可知圓心在第一象限,設(shè)圓心的坐標(biāo)為,可得圓的半徑為,寫出圓的標(biāo)準(zhǔn)方程,利用點(diǎn)在圓上,求得實(shí)數(shù)的值,利用點(diǎn)到直線的距離公式可求出圓心到直線的距離.【詳解】由于圓上的點(diǎn)在第一象限,若圓心不在第一象限,則圓與至少與一條坐標(biāo)軸相交,不合乎題意,所以圓心必在第一象限,設(shè)圓心的坐標(biāo)為,則圓的半徑為,圓的標(biāo)準(zhǔn)方程為.由題意可得,可得,解得或,所以圓心的坐標(biāo)為或,圓心到直線的距離均為;圓心到直線的距離均為圓心到直線的距離均為;所以,圓心到直線的距離為.故選:B.【點(diǎn)睛】本題考查圓心到直線距離的計(jì)算,求出圓的方程是解題的關(guān)鍵,考查計(jì)算能力,屬于中等題.9、A【解析】根據(jù),利用遞推公式求得數(shù)列的通項(xiàng)公式.再根據(jù)新定義的意義,代入解不等式即可求得實(shí)數(shù)的取值范圍.【詳解】因?yàn)樗援?dāng)時(shí),兩式相減可得,即,所以數(shù)列是以公比的等比數(shù)列當(dāng)時(shí),所以,則由“差半遞增”數(shù)列的定義可知化簡(jiǎn)可得解不等式可得即實(shí)數(shù)的取值范圍為故選:A.10、B【解析】判斷圓心距與兩圓半徑之和、之差關(guān)系即可判斷兩圓位置關(guān)系.【詳解】由得圓心坐標(biāo)為,半徑,由得圓心坐標(biāo)為,半徑,∴,,∴,即兩圓相交.故選:B.11、A【解析】由絕對(duì)值的意義可知命題p為真命題;由于,所以命題q為假命題;因此為假命題,為真命題,“且”字聯(lián)結(jié)的命題只有當(dāng)兩命題都真時(shí)才是真命題,所以答案選A12、B【解析】先由傾斜角為45°,可得其斜率為1,再由軸上的截距是,可求出直線方程【詳解】解:因?yàn)橹本€的傾斜角為45°,所以直線的斜率為,因?yàn)橹本€在軸上的截距是,所以所求的直線方程為,即,故選:B二、填空題:本題共4小題,每小題5分,共20分。13、6【解析】根據(jù)兩圓的公共弦過(guò)圓的圓心即可獲解【詳解】?jī)蓤A相減得公共弦所在的直線方程為由題知兩圓的公共弦過(guò)圓的圓心,所以即,又,所以到直線的距離所以直線被圓所截得的弦長(zhǎng)為故答案為:614、【解析】由條件可得均為等腰直角三角形,從而,先證明平面,從而,即得到為平面與平面夾角的平面角,從而可求解.【詳解】由,則,則在直三棱柱中,平面,又平面,則又,所以平面平面,所以由由條件可得均為等腰直角三角形,則所以,即,由所以平面,又平面所以,即為平面與平面夾角的平面角.在直角中,所以故答案為:15、【解析】根據(jù)圖形可求出與棱錐的體積之比,即可求出結(jié)果【詳解】如圖所示:棱錐可看成正四棱錐減去四個(gè)小棱錐的體積得到,設(shè)正四棱錐的體積為,為PB的中點(diǎn),為PD的中點(diǎn),所以,而,同理,故棱錐的體積的為,即棱錐與棱錐的體積之比為故答案為:.16、【解析】先求解出該二項(xiàng)式展開(kāi)式的通項(xiàng),然后求解出滿足題意的項(xiàng)數(shù)值,帶入通項(xiàng)即可求解出展開(kāi)式的系數(shù).【詳解】展開(kāi)式通項(xiàng)為,由題意,令,解得,,所以項(xiàng)的系數(shù)為.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)證明見(jiàn)解析(2)【解析】(1)根據(jù)線面垂直的判定定理證出平面,即可證得;(2)以A為原點(diǎn),分別以所在直線為x軸,y軸,z軸建立空間直角坐標(biāo)系,根據(jù)二面角的向量公式即可求出【小問(wèn)1詳解】如圖,連接,由已知可得四邊形是正方形,所以在直三棱柱中,平面平面,交線為,在中,可知,所以平面,于因?yàn)椋云矫?,而平面,所以【小?wèn)2詳解】如圖所示,以A為原點(diǎn),分別以所在直線為x軸,y軸,z軸建立空間直角坐標(biāo)系,則,于是設(shè)平面的法向量為,則,可取而平面的一個(gè)法向量為,所以故平面與平面所成銳二面角的余弦值為18、(1);(2)存在;或.【解析】(1)設(shè),由,,,求得的值即可得橢圓的方程;(2)設(shè),,直線的方程為與橢圓方程聯(lián)立可得,,進(jìn)而可得弦長(zhǎng),求出點(diǎn)到直線的距離,解方程,求得的值即可求解.【小問(wèn)1詳解】設(shè),因?yàn)橹本€的斜率為,,所以,可得,又因?yàn)?,所以,所以,所以橢圓的方程為【小問(wèn)2詳解】假設(shè)存在直線,使得的面積為,當(dāng)軸時(shí),不合題意,設(shè),,直線的方程為,聯(lián)立消去得:,由可得或,,,所以,點(diǎn)到直線的距離,所以,整理可得:即,所以或,所以或,所以存在直線:或使得的面積為.19、(1)(2)人【解析】(1)由頻率分布直方圖的性質(zhì)求得,結(jié)合,即可求得的值;(2)由頻率分布直方圖求得落在區(qū)間內(nèi)的概率,進(jìn)而求得該校高三年級(jí)的人數(shù)【小問(wèn)1詳解】解:由頻率分布直方圖的性質(zhì),可得:,可得,又由,可得解得;【小問(wèn)2詳解】解:由頻率分布直方圖可得,成績(jī)落在區(qū)間內(nèi)的概率為,則該校高三年級(jí)的人數(shù)為(人)20、(1)答案見(jiàn)解析,.(2).【解析】(1)若選①:求得雙曲線得雙曲線的焦點(diǎn)得出橢圓的,再由,可求得橢圓的標(biāo)準(zhǔn)方程;若選②:根據(jù)已知條件和橢圓的離心率可求得,從而得橢圓的標(biāo)準(zhǔn)方程;若選③:由已知建立方程,求解可求得,從而得橢圓的標(biāo)準(zhǔn)方程.(2)設(shè)直線的斜率為k,所求的直線方程為,代入橢圓的方程并整理得,設(shè)直線與橢圓的交點(diǎn)為,由根與系數(shù)的關(guān)系和中點(diǎn)坐標(biāo)公式可求得答案.【小問(wèn)1詳解】解:若選①:由雙曲線得雙曲線的焦點(diǎn)和,因?yàn)闄E圓與雙曲線有相同的焦點(diǎn),所以橢圓的,又,所以,所以,所以橢圓的標(biāo)準(zhǔn)方程為;若選②:因?yàn)椋?,又離心率,所以,即,解得,所以橢圓的標(biāo)準(zhǔn)方程為;若選③:因?yàn)?,所以,即,又,解得,,所以橢圓的標(biāo)準(zhǔn)方程為;【小問(wèn)2詳解】解:由題意得直線的斜率必存在,設(shè)直線的斜率為k,所求的直線方程為,代入橢圓的方程并整理得,設(shè)直線與橢圓的交點(diǎn)為,則,因?yàn)辄c(diǎn)為AB中點(diǎn),所以,解得,所以所求的直線方程為,即.21、(1)(2)【解析】(1)先求出甲運(yùn)動(dòng)員打中10環(huán)的概率,從而可求出甲運(yùn)動(dòng)員在決賽中前2發(fā)子彈共打出1次10環(huán)的概率;(2)由于甲比乙落后2環(huán),所以甲要獲勝,則乙6環(huán),甲9環(huán)或10環(huán),或者乙7環(huán),甲10環(huán),再利用獨(dú)立事件和互斥事件的概率公式求解即可【小問(wèn)1詳解】由表中的數(shù)據(jù)可得甲運(yùn)動(dòng)員打中10環(huán)的概率為,所以甲運(yùn)動(dòng)員在決
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 結(jié)合車活動(dòng)策劃方案(3篇)
- 氣柜拆除施工方案(3篇)
- 蒸汽磚施工方案(3篇)
- 北京暖氣施工方案(3篇)
- 肇源打井施工方案(3篇)
- 垂釣中心施工方案(3篇)
- 2025年企業(yè)企業(yè)信息化建設(shè)與運(yùn)維實(shí)施手冊(cè)
- 禮服品牌合作方案
- 2025年大學(xué)大三(眼視光醫(yī)學(xué))角膜病學(xué)階段測(cè)試試題及答案
- 2025年中職計(jì)算機(jī)信息管理(信息管理應(yīng)用)試題及答案
- 2025年輸血知識(shí)考試試題及答案
- 2025-2026學(xué)年人教版八年級(jí)上冊(cè)道德與法治期末試卷(含答案和解析)
- 2026貴州鹽業(yè)集團(tuán)秋招面筆試題及答案
- 四川省成都市天府新區(qū)2024-2025學(xué)年七上期末數(shù)學(xué)試卷(原卷版)
- 慢性病患者健康管理工作方案
- 安全防范設(shè)計(jì)評(píng)估師基礎(chǔ)理論復(fù)習(xí)試題
- 2026年內(nèi)蒙古電子信息職業(yè)技術(shù)學(xué)院?jiǎn)握新殬I(yè)適應(yīng)性測(cè)試題庫(kù)附答案詳解
- DB53-T 1269-2024 改性磷石膏用于礦山廢棄地生態(tài)修復(fù)回填技術(shù)規(guī)范
- 2025年及未來(lái)5年市場(chǎng)數(shù)據(jù)中國(guó)過(guò)氧化苯甲酰行業(yè)市場(chǎng)深度分析及發(fā)展前景預(yù)測(cè)報(bào)告
- 昆明醫(yī)科大學(xué)研究生學(xué)位論文撰寫要求及有關(guān)規(guī)定
- 中華人民共和國(guó)公務(wù)員法(2025年修正)
評(píng)論
0/150
提交評(píng)論