遼寧省凌源二中2026屆高二上數(shù)學期末質量跟蹤監(jiān)視模擬試題含解析_第1頁
遼寧省凌源二中2026屆高二上數(shù)學期末質量跟蹤監(jiān)視模擬試題含解析_第2頁
遼寧省凌源二中2026屆高二上數(shù)學期末質量跟蹤監(jiān)視模擬試題含解析_第3頁
遼寧省凌源二中2026屆高二上數(shù)學期末質量跟蹤監(jiān)視模擬試題含解析_第4頁
遼寧省凌源二中2026屆高二上數(shù)學期末質量跟蹤監(jiān)視模擬試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

遼寧省凌源二中2026屆高二上數(shù)學期末質量跟蹤監(jiān)視模擬試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設命題,,則為()A., B.,C., D.,2.設變量滿足約束條件,則的最大值為()A.0 B.C.3 D.43.在四棱錐中,底面是正方形,為的中點,若,則()A B.C. D.4.已知向量,,且,則值是()A. B.C. D.5.據(jù)記載,歐拉公式是由瑞士著名數(shù)學家歐拉發(fā)現(xiàn)的,該公式被譽為“數(shù)學中的天橋”特別是當時,得到一個令人著迷的優(yōu)美恒等式,將數(shù)學中五個重要的數(shù)(自然對數(shù)的底,圓周率,虛數(shù)單位,自然數(shù)的單位和零元)聯(lián)系到了一起,有些數(shù)學家評價它是“最完美的數(shù)學公式”.根據(jù)歐拉公式,復數(shù)的虛部()A. B.C. D.6.若雙曲線的一個焦點為,則的值為()A. B.C.1 D.7.設等比數(shù)列的前項和為,且,則()A. B.C. D.8.橢圓的一個焦點坐標為,則實數(shù)m的值為()A.2 B.4C. D.9.是數(shù)列,,,-17,中的第幾項()A第項 B.第項C.第項 D.第項10.等差數(shù)列的通項公式,數(shù)列,其前項和為,則等于()A. B.C. D.11.已知函數(shù),則()A.函數(shù)在上單調(diào)遞增B.函數(shù)上有兩個零點C.函數(shù)有極大值16D.函數(shù)有最小值12.若公差不為0的等差數(shù)列的前n項和是,,且,,為等比數(shù)列,則使成立的最大n是()A.6 B.10C.11 D.12二、填空題:本題共4小題,每小題5分,共20分。13.已知向量、滿足,,且,則與的夾角為___________.14.已知等差數(shù)列滿足,,,則公差______15.已知,為雙曲線的左、右焦點,過作的垂線分別交雙曲線的左、右兩支于B,C兩點(如圖).若,則雙曲線的漸近線方程為______16.已知直線l1:(1)x+y﹣2=0與l2:(1)x+ay﹣4=0平行,則a=_____.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知公差大于零的等差數(shù)列的前項和為,且滿足,,(1)求數(shù)列的通項公式;(2)若數(shù)列是等差數(shù)列,且,求非零常數(shù);18.(12分)設AB是過拋物線焦點F的弦,若,,求證:(1);(2)(為弦AB的傾斜角)19.(12分)已知數(shù)列是等差數(shù)列,其前項和為,且,.(1)求;(2)記數(shù)列的前項和為,求當取得最小值時的的值.20.(12分)已知數(shù)列的前n項和為,滿足,(1)求證:數(shù)列是等比數(shù)列,并求數(shù)列的通項公式;(2)設,為數(shù)列的前n項和,①求;②若不等式對任意的正整數(shù)n恒成立,求實數(shù)的取值范圍21.(12分)如圖,四棱臺的底面為正方形,面,(1)求證:平面;(2)若平面平面,求直線m與平面所成角的正弦值22.(10分)已知函數(shù)(1)求曲線在點(e,)的切線方程;(2)求函數(shù)的單調(diào)區(qū)間.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】全稱命題的否定時特稱命題,把任意改為存在,把結論否定.【詳解】命題,,則為“,”.故選:B2、A【解析】先畫出約束條件所表示的平面區(qū)域,然后根據(jù)目標函數(shù)的幾何意義,即可求出目標函數(shù)的最大值.【詳解】解:滿足約束條件的可行域如下圖所示:由,可得,因為目標函數(shù),即,表示斜率為,截距為的直線,由圖可知,當直線經(jīng)過時截距取得最小值,即取得最大值,所以的最大值為,故選:A.3、C【解析】由為的中點,根據(jù)向量的運算法則,可得,即可求解.【詳解】由底面是正方形,E為的中點,且,根據(jù)向量的運算法則,可得.故選:C.4、A【解析】求出向量,的坐標,利用向量數(shù)量積坐標表示即可求解.【詳解】因為向量,,所以,,因為,所以,解得:,故選:A.5、D【解析】由歐拉公式的定義和復數(shù)的概念進行求解.【詳解】由題意,得,則復數(shù)的虛部為.故選:D.6、B【解析】由題意可知雙曲線的焦點在軸,從而可得,再列方程可求得結果【詳解】因為雙曲線的一個焦點為,所以,,所以,解得,故選:B7、C【解析】根據(jù)給定條件求出等比數(shù)列公比q的關系,再利用前n項和公式計算得解.【詳解】設等比數(shù)列的的公比為q,由得:,解得,所以.故選:C8、C【解析】由焦點坐標得到,求解即可.【詳解】根據(jù)焦點坐標可知,橢圓焦點在y軸上,所以有,解得故選:C.9、C【解析】利用等差數(shù)列的通項公式即可求解【詳解】設數(shù)列,,,,是首項為,公差d=-4的等差數(shù)列{},,令,得故選:C10、D【解析】根據(jù)裂項求和法求得,再計算即可.【詳解】解:由題意得====所以.故選:D11、C【解析】對求導,研究的單調(diào)性以及極值,再結合選項即可得到答案.【詳解】,由,得或,由,得,所以在上遞增,在上遞減,在上遞增,所以極大值為,極小值為,所以有3個零點,且無最小值.故選:C12、C【解析】設等差數(shù)列的公差為d,根據(jù),且,,為等比數(shù)列,求得首項和公差,再利用前n項和公式求解.【詳解】設等差數(shù)列的公差為d,因為,且,,為等比數(shù)列,所以,解得或(舍去),則,所以,解得,所以使成立的最大n是11,故選:C二、填空題:本題共4小題,每小題5分,共20分。13、##【解析】根據(jù)向量數(shù)量積的計算公式即可計算.【詳解】,,.故答案為:﹒14、2【解析】根據(jù)等差數(shù)列性質求得,再根據(jù)題意列出相關的方程組,解得答案.【詳解】為等差數(shù)列,故由可得:,即,故,故,所以,解得,故答案為:215、【解析】根據(jù)雙曲線的定義先計算出,,注意到圖中漸近線,于是利用兩種不同的表示法列方程求解.【詳解】,則,由雙曲線的定義及在右支上,,又在左支上,則,則,在中,由余弦定理,,而圖中漸近線,于是,得,于是,不妨令,化簡得,解得,漸近線就為:.故答案為:.16、2【解析】根據(jù)兩直線平行的充要條件求解【詳解】因為已知兩直線平行,所以,解得故答案為:【點睛】本題考查兩直線平行的充要條件,兩直線平行的充要條件是,或,在均不為0時,用表示容易理解與記憶三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)利用等差數(shù)列的性質可得,聯(lián)立方程可得,代入等差數(shù)列的通項公式可求;(2)代入等差數(shù)列的前和公式可求,進一步可得,然后結合等差數(shù)列的定義可得,從而可求.【詳解】(1)為等差數(shù)列,,又是方程的兩個根,(2)由(1)可知,為等差數(shù)列,舍去)當時,為等差數(shù)列,滿足要求【點睛】本題主要考查了等差數(shù)列的定義、性質、通項公式、前項和公式的綜合運用,屬于中檔題.18、(1)證明見解析(2)證明見解析【解析】(1)設直線的方程為,代入,再利用韋達定理,即可得到結論;(2)由拋物線的定義,結合余弦函數(shù)的定義,即可得到的長,同理可得的長,兩式相乘即可證明;【小問1詳解】證明:由題意設直線的方程為,代入,可得,所以;【小問2詳解】證明:如圖,不妨設弦AB的傾斜角為銳角,作垂直于拋物線準線,垂足為M,N,由拋物線的定義可得,所以,同理可得,,所以,當為直角或鈍角時,同理可證明,故.19、(1)(2)10或11【解析】(1)利用通項公式以及求和公式列出方程組得出;(2)先求出數(shù)列通項公式,再根據(jù)得出取得最小值時的的值.【小問1詳解】設等差數(shù)列的公差為,則由得解得所以.【小問2詳解】因為,所以,則.令,解得,由于,故或,故當前項和取得最小值時的值為10或11.20、(1)證明見解析,(2)①;②【解析】(1)由得到,即可得到,從而得證,即可求出的通項公式,從而得到的通項公式;(2)①由(1)可得,再利用錯位相減法求和即可;②利用作差法證明的單調(diào)性,即可得到,即可得到,再解一元二次不等式即可;【小問1詳解】證明:由,,當時,可得,解得,當時,,又,兩式相減得,所以,所以,即,則數(shù)列是首項為,公比為的等比數(shù)列;所以,所以【小問2詳解】解:①由(1)可得,所以,所以,所以,所以整理得②由①知,所以,即單調(diào)遞增,所以,因為不等式對任意的正整數(shù)n恒成立,所以,即,解得或,即21、(1)證明見解析;(2).【解析】(1):連結交交于點O,連結,,通過四棱臺的性質以及給定長度證明,從而證出,利用線面平行的判定定理可證明面;(2)利用線面平行的性質定理以及基本事實可證明,即求與平面所成角的正弦值;通過條件以及面面垂直的判定定理可證明面面,則為與平面所成角,利用余弦定理求出余弦值,即可求出正弦值.【詳解】(1)證明:連結交交于點O,連結,,由多面體為四棱臺可知四點共面,且面面,面面,面面,∴,∵和均為正方形,,∴,所以為平行四邊形,∴,面,面,∴平面(2)∵面,平面,平面,∴,又∵,∴∴求直線m與平面所成角可轉化為求與平面所成角,∵和均為正方形,,且,∴,,∴,又∵面,∴∴面,∴面面,由面面,設O在面的投影為M,則,∴為與平面所成角,由,可得,又∵,∴∴,直線m與平面所成角的正弦值為.【點睛】思路點睛:(1)找兩個平面的交線,可通過兩個平面的交點找到,也可利用線面平行的性質找和交線

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論