天津市濱海新區(qū)天津開發(fā)區(qū)第一中學(xué)2026屆數(shù)學(xué)高二上期末經(jīng)典模擬試題含解析_第1頁
天津市濱海新區(qū)天津開發(fā)區(qū)第一中學(xué)2026屆數(shù)學(xué)高二上期末經(jīng)典模擬試題含解析_第2頁
天津市濱海新區(qū)天津開發(fā)區(qū)第一中學(xué)2026屆數(shù)學(xué)高二上期末經(jīng)典模擬試題含解析_第3頁
天津市濱海新區(qū)天津開發(fā)區(qū)第一中學(xué)2026屆數(shù)學(xué)高二上期末經(jīng)典模擬試題含解析_第4頁
天津市濱海新區(qū)天津開發(fā)區(qū)第一中學(xué)2026屆數(shù)學(xué)高二上期末經(jīng)典模擬試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

天津市濱海新區(qū)天津開發(fā)區(qū)第一中學(xué)2026屆數(shù)學(xué)高二上期末經(jīng)典模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知實數(shù),滿足,則的最小值是()A. B.C. D.2.在棱長為1的正方體中,是線段上一個動點,則下列結(jié)論正確的有()A.不存在點使得異面直線與所成角為90°B.存在點使得異面直線與所成角為45°C.存在點使得二面角的平面角為45°D.當(dāng)時,平面截正方體所得的截面面積為3.如圖,在棱長為1的正方體中,點B到直線的距離為()A. B.C. D.4.過雙曲線(,)的左焦點作圓:的兩條切線,切點分別為,,雙曲線的左頂點為,若,則雙曲線的漸近線方程為()A. B.C. D.5.已知{an}是以10為首項,-3為公差的等差數(shù)列,則當(dāng){an}的前n項和Sn,取得最大值時,n=()A.3 B.4C.5 D.66.在拋物線上,橫坐標(biāo)為4的點到焦點的距離為5,則p的值為()A. B.2C.1 D.47.設(shè),向量,,,且,,則()A. B.C.3 D.48.橢圓C:的焦點在x軸上,其離心率為則橢圓C的長軸長為()A.2 B.C.4 D.89.設(shè)為可導(dǎo)函數(shù),且滿足,則曲線在點處的切線的斜率是A. B.C. D.10.已知直線的一個方向向量為,則直線的傾斜角為()A. B.C. D.11.已知隨機變量服從正態(tài)分布,且,則()A.0.1 B.0.2C.0.3 D.0.412.兩圓和的位置關(guān)系是()A.內(nèi)切 B.外離C.外切 D.相交二、填空題:本題共4小題,每小題5分,共20分。13.等比數(shù)列中,,,則數(shù)列的公比為____.14.雙曲線的右焦點到C的漸近線的距離為,則C漸近線方程為______15.已知直線與圓:交于、兩點,則的面積為______.16.函數(shù)在處切線的斜率為_____三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知正三棱柱底面邊長為,是上一點,是以為直角頂點的等腰直角三角形(1)證明:是中點;(2)求點到平面的距離18.(12分)已知函數(shù)f(x)=ax3+bx2﹣3x在x=﹣1和x=3處取得極值.(1)求a,b的值(2)求f(x)在[﹣4,4]內(nèi)的最值.19.(12分)已知數(shù)列是等差數(shù)列,為其前n項和,,(1)求的通項公式;(2)若,求證:為等比數(shù)列20.(12分)在平面直角坐標(biāo)系中,點到兩點的距離之和等于4,設(shè)點的軌跡為曲線(1)求曲線的方程;(2)設(shè)直線與交于兩點,為何值時?21.(12分)如圖,在四棱錐中,底面是正方形,側(cè)面底面,為側(cè)棱上一點(1)求證:;(2)若為中點,平面與側(cè)棱于點,且,求四棱錐的體積22.(10分)已知函數(shù),.(1)若,求曲線在點處的切線方程;(2)若函數(shù)在上是減函數(shù),求實數(shù)的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】將化成,即可求出的最小值【詳解】由可化為,所以,解得,因此最小值是故選:A2、D【解析】由正方體的性質(zhì)可將異面直線與所成的角可轉(zhuǎn)化為直線與所成角,而當(dāng)為的中點時,可得,可判斷A;與或重合時,直線與所成的角最小可判斷B;當(dāng)與重合時,二面角的平面角最小,通過計算可判斷C;過作,交于,交于點,由題意可得四邊形即為平面截正方體所得的截面,且四邊形是等腰梯形,然后利用已知數(shù)據(jù)計算即可判斷D.【詳解】異面直線與所成的角可轉(zhuǎn)化為直線與所成角,當(dāng)為中點時,,此時與所成的角為90°,所以A錯誤;當(dāng)與或重合時,直線與所成角最小,為60°,所以B錯誤;當(dāng)與重合時,二面角的平面角最小,,所以,所以C錯誤;對于D,過作,交于,交于點,因為,所以、分別是、的中點,又,所以,四邊形即為平面截正方體所得的截面,因為,且,所以四邊形是等腰梯形,作交于點,所以,,所以梯形的面積為,所以D正確.故選:D.3、A【解析】以為坐標(biāo)原點,以為單位正交基底,建立空間直角坐標(biāo)系,取,,利用向量法,根據(jù)公式即可求出答案.【詳解】以為坐標(biāo)原點,以為單位正交基底,建立如圖所示的空間直角坐標(biāo)系,則,,取,,則,,則點B到直線AC1的距離為.故選:A4、C【解析】根據(jù),,可以得到,從而得到與的關(guān)系式,再由,,的關(guān)系,進(jìn)而可求雙曲線的漸近線方程【詳解】解:由,,則是圓的切線,,,,所以,因為雙曲線的漸近線方程為,即為故選:C5、B【解析】由題可得當(dāng)時,,當(dāng)時,,即得.【詳解】∵{an}是以10為首項,-3為公差的等差數(shù)列,∴,故當(dāng)時,,當(dāng)時,,故時,取得最大值故選:B.6、B【解析】由方程可得拋物線的焦點和準(zhǔn)線,進(jìn)而由拋物線的定義可得,解之可得值【詳解】解:由題意可得拋物線開口向右,焦點坐標(biāo),,準(zhǔn)線方程,由拋物線的定義可得拋物線上橫坐標(biāo)為4的點到準(zhǔn)線的距離等于5,即,解之可得.故選:B.7、C【解析】根據(jù)空間向量垂直與平行的坐標(biāo)表示,求得的值,得到向量,進(jìn)而求得,得到答案.【詳解】由題意,向量,,,因為,可得,解得,即,又因為,可得,解得,即,可得,所以.故選:C.8、C【解析】根據(jù)橢圓的離心率,即可求出,進(jìn)而求出長軸長.【詳解】由橢圓的性質(zhì)可知,橢圓的離心率為,則,即所以橢圓C的長軸長為故選:C.【點睛】本題主要考查了橢圓的幾何性質(zhì),屬于基礎(chǔ)題.9、D【解析】由題,為可導(dǎo)函數(shù),,即曲線在點處的切線的斜率是,選D【點睛】本題考查導(dǎo)數(shù)的定義,切線的斜率,以及極限的運算,本題解題的關(guān)鍵是對所給的極限式進(jìn)行整理,得到符合導(dǎo)數(shù)定義的形式10、A【解析】由直線斜率與方向向量的關(guān)系算出斜率,然后可得.【詳解】記直線的傾斜角為,由題知,又,所以,即.故選:A11、A【解析】利用正態(tài)分布的對稱性和概率的性質(zhì)即可【詳解】由,且則有:根據(jù)正態(tài)分布的對稱性可知:故選:A12、A【解析】計算出圓心距,利用幾何法可判斷兩圓的位置關(guān)系.【詳解】圓的圓心坐標(biāo)為,半徑為,圓的圓心坐標(biāo)為,半徑為,兩圓圓心距為,則,因此,兩圓和內(nèi)切.故選:A.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)等比數(shù)列的定義,結(jié)合已知條件,代值計算即可求得結(jié)果.【詳解】因為是等比數(shù)列,設(shè)其公比為,又,,故可得,解得.故答案為:.14、【解析】根據(jù)給定條件求出雙曲線漸近線,再用點到直線的距離公式計算作答【詳解】雙曲線的漸近線為:,即,依題意,,即,解得,所以C漸近線方程為.故答案為:15、2【解析】用已知直線方程和圓方程聯(lián)立,可以求出交點,再分析三角形的形狀,即可求出三角形的面積.【詳解】由圓C方程:可得:;即圓心C的坐標(biāo)為(0,-1),半徑r=2;聯(lián)立方程得交點,如下圖:可知軸,∴是以為直角的直角三角形,,故答案為:2.16、1【解析】求得函數(shù)的導(dǎo)數(shù),計算得,即可得到切線的斜率【詳解】由題意,函數(shù),則,所以,即切線的斜率為1,故答案為:1三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2).【解析】(1)證明出平面,可得出,再利用等腰三角形的幾何性質(zhì)可證得結(jié)論成立;(2)計算出三棱錐的體積以及的面積,利用等體積法可求得點到平面的距離.【小問1詳解】證明:在正三棱柱,平面,平面,則,因為是以為直角頂點的等腰直角三角形,則,,則平面,平面,所以,,因為為等邊三角形,故點為的中點.【小問2詳解】解:因為是邊長為的等邊三角形,則,平面,平面,則,即,所以,,,,設(shè)點到平面的距離為,,,解得.因此,點到平面距離為.18、(1)a,b=﹣1(2)f(x)min=,f(x)max=【解析】(1)先對函數(shù)求導(dǎo),由題意可得=3ax2+2bx﹣3=0的兩個根為﹣1和3,結(jié)合方程的根與系數(shù)關(guān)系可求,(2)由(1)可求,然后結(jié)合導(dǎo)數(shù)可判斷函數(shù)的單調(diào)性,進(jìn)而可求函數(shù)的最值.【詳解】解:(1)=3ax2+2bx﹣3,由題意可得=3ax2+2bx﹣3=0的兩個根為﹣1和3,則,解可得a,b=-1,(2)由(1),易得f(x)在,單調(diào)遞增,在上單調(diào)遞減,又f(﹣4),f(﹣1),f(3)=﹣9,f(4),所以f(x)min=f(﹣4),f(x)max=f(﹣1).【點睛】本題考查利用極值求函數(shù)的參數(shù),以及利用導(dǎo)數(shù)求函數(shù)的最值問題,屬于中檔題19、(1)(2)證明見解析【解析】(1)由已知條件列出關(guān)于的方程組,解方程組求出,從而可求出的通項公式,(2)由(1)可得,然后利用等比數(shù)列的定義證明即可【小問1詳解】設(shè)數(shù)列的公差為,則由,,得,解得,所以【小問2詳解】證明:由(1)得,所以,()所以數(shù)列是以9為公比,27為首項的等比數(shù)列20、(1);(2).【解析】(1)由題意可得:點的軌跡為橢圓,設(shè)標(biāo)準(zhǔn)方程為:,則,,,解出可得橢圓的標(biāo)準(zhǔn)方程(2)設(shè),,直線方程與橢圓聯(lián)立,化為:,恒成立,由,可得,把根與系數(shù)的關(guān)系代入解得【詳解】解:(1)由題意可得:點的軌跡為橢圓,設(shè)標(biāo)準(zhǔn)方程為:,則,,,可得橢圓的標(biāo)準(zhǔn)方程為:(2)設(shè),,聯(lián)立,化為:,恒成立,,,,,,解得.滿足當(dāng)時,能使【點睛】本題考查了橢圓的標(biāo)準(zhǔn)方程及其性質(zhì)、直線與橢圓相交弦長問題、數(shù)量積運算性質(zhì)、一元二次方程的根與系數(shù)的關(guān)系,考查了推理能力與計算能力,屬于難題21、(1)證明見解析(2)【解析】(1)利用面面垂直的性質(zhì)定理可得出平面,再利用線面垂直的性質(zhì)可得出;(2)分析可知為的中點,平面,計算出梯形的面積,利用錐體的體積公式可求得四棱錐的體積【小問1詳解】證明:因為四邊形為正方形,則,因為側(cè)面底面,平面平面,平面,所以平面,又平面,所以.【小問2詳解】解:因為,平面,平面,所以,平面,因為平面,平面平面,所以,所以,,則,所以,四邊形是直角梯形,又是中點,所以,,所以,由平面,平面,所以,從而,正三角形中,是中點,,即,,所以平面,因為,所以.22、(1).(2).【解析】分析:(1)由和可由點斜式得切線方程;(2)由函數(shù)在上是減函數(shù),可得在上恒成立,,由二次函數(shù)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論