2026屆廣東省廣州三中高二上數(shù)學期末聯(lián)考試題含解析_第1頁
2026屆廣東省廣州三中高二上數(shù)學期末聯(lián)考試題含解析_第2頁
2026屆廣東省廣州三中高二上數(shù)學期末聯(lián)考試題含解析_第3頁
2026屆廣東省廣州三中高二上數(shù)學期末聯(lián)考試題含解析_第4頁
2026屆廣東省廣州三中高二上數(shù)學期末聯(lián)考試題含解析_第5頁
已閱讀5頁,還剩12頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2026屆廣東省廣州三中高二上數(shù)學期末聯(lián)考試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.如果命題為真命題,為假命題,那么()A.命題,都是真命題 B.命題,都是假命題C.命題,至少有一個是真命題 D.命題,只有一個是真命題2.設曲線在點處的切線與x軸、y軸分別交于A,B兩點,O為坐標原點,則的面積等于()A.1 B.2C.4 D.63.設、分別是橢圓()的左、右焦點,過的直線l與橢圓E相交于A、B兩點,且,則的長為()A. B.1C. D.4.已知直線的傾斜角為,在軸上的截距為,則此直線的方程為()A. B.C. D.5.若是函數(shù)的極值點,則函數(shù)()A.有最小值,無最大值 B.有最大值,無最小值C.有最小值,最大值 D.無最大值,無最小值6.丹麥數(shù)學家琴生(Jensen)是19世紀對數(shù)學分析作出卓越貢獻的巨人,特別是在函數(shù)的凸凹性與不等式方面留下了很多寶貴的成果.設函數(shù)在區(qū)間內的導函數(shù)為,在區(qū)間內的導函數(shù)為,在區(qū)間內恒成立,則稱函數(shù)在區(qū)間內為“凸函數(shù)”,則下列函數(shù)在其定義域內是“凸函數(shù)”的是()A. B.C. D.7.已知斜率為1的直線與橢圓相交于A、B兩點,O為坐標原點,AB的中點為P,若直線OP的斜率為,則橢圓C的離心率為()A. B.C. D.8.函數(shù)的導函數(shù)為()A. B.C. D.9.已知,,則等于()A.2 B.C. D.10.若函數(shù)有兩個不同的極值點,則實數(shù)的取值范圍是()A. B.C. D.11.函數(shù)的圖象大致為()A B.C D.12.已知實數(shù),滿足不等式組,若,則的最小值為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.2021年7月24日,在東京奧運會女子10米氣步槍決賽中,中國選手楊倩以251.8環(huán)的總成績奪得金牌,為中國代表團摘得本屆奧運會首金.已知楊倩其中5次射擊命中的環(huán)數(shù)如下:10.8,10.6,10.6,10.7,9.8,則這組數(shù)據的方差為______14.如圖,甲站在水庫底面上的點處,乙站在水壩斜面上的點處,已知庫底與水壩斜面所成的二面角為,測得從,到庫底與水壩斜面的交線的距離分別為,,若,則甲,乙兩人相距________________15.過拋物線的準線上任意一點做拋物線的切線,切點分別為,則A點到準線的距離與點到準線的距離之和的最小值為___________16.達?芬奇認為:和音樂一樣,數(shù)學和幾何“包含了宇宙的一切”,從年輕時起,他就本能地把這些主題運用在作品中,布達佩斯的伊帕姆維澤蒂博物館收藏的達?芬奇方磚,在正六邊形上畫了具有視覺效果的正方體圖案(如圖1),把三片這樣的達?芬奇方磚形成圖2的組合,這個組合表達了圖3所示的幾何體.若圖3中每個正方體的邊長為1,則點到直線的距離是__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù),.(1)當時,求函數(shù)的極值;(2)若存在,使不等式成立,求實數(shù)的取值范圍.18.(12分)圓與軸的交點分別為,且與直線,都相切(1)求圓的方程;(2)圓上是否存在點滿足?若存在,求出滿足條件的所有點的坐標;若不存在,請說明理由.19.(12分)已知各項為正數(shù)的等比數(shù)列中,,.(1)求數(shù)列的通項公式;(2)設,求數(shù)列的前n項和.20.(12分)等差數(shù)列{an}的前n項和記為Sn,且.(1)求數(shù)列{an}的通項公式an(2)記數(shù)列的前n項和為Tn,若,求n的最小值.21.(12分)已知橢圓:的一個焦點與曲線的焦點重合,且離心率為.(1)求橢圓的方程(2)設直線:交橢圓于M,N兩點.①若且的面積為,求的值.②若軸上的任意一點到直線與直線(為橢圓的右焦點)的距離相等,求證:直線恒過定點,并求出該定點坐標22.(10分)如圖,在四棱錐S-ABCD中,SA⊥底面ABCD,底面ABCD是梯形,其中,且.(1)求四棱錐S-ABCD的側面積;(2)求平面SCD與平面SAB的夾角的余弦值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】由命題為真命題,可判斷二者至少有一個為真命題,由為假命題,可判斷二者至少有一個為假命題,由此可得答案.【詳解】命題為真命題,說明二者至少有一個為真命題,為假命題,說明二者至少有一個為假命題,綜合上述,可知命題,只有一個是真命題,故選:D2、C【解析】求出原函數(shù)的導函數(shù),得到函數(shù)在處的導數(shù)值,寫出切線方程,分別求得切線在兩坐標軸上的坐標,再由三角形面積公式求解【詳解】由,得,,又切線過點,曲線在點處的切線方程為,取,得,取,得的面積等于故選:C3、C【解析】由橢圓的定義得:,,結合條件可得,即可得答案.【詳解】由橢圓的定義得:,,又,,所以,由橢圓知,所以.故選:C4、D【解析】求出直線的斜率,利用斜截式可得出直線的方程.【詳解】直線的斜率為,由題意可知,所求直線的方程為.故選:D.5、A【解析】對求導,根據極值點求參數(shù)a,再由導數(shù)研究其單調性并判斷其最值情況.【詳解】由題設,且,∴,可得.∴且,當時,遞減;當時,遞增;∴有極小值,無極大值.綜上,有最小值,無最大值.故選:A6、B【解析】根據基本初等函數(shù)的導函數(shù)公式求各函數(shù)二階導函數(shù),判斷其在定義域上是否恒有,即可知正確選項.【詳解】A:,則,顯然定義域內有正有負,故不是“凸函數(shù)”;B:,則,故是“凸函數(shù)”;C:,則,故不是“凸函數(shù)”;D:,則,顯然定義域內有正有負,故不是“凸函數(shù)”;故選:B7、B【解析】這是中點弦問題,注意斜率與橢圓a,b之間的關系.【詳解】如圖:依題意,假設斜率為1的直線方程為:,聯(lián)立方程:,解得:,代入得,故P點坐標為,由題意,OP的斜率為,即,化簡得:,,,;故選:B.8、B【解析】利用復合函數(shù)求導法則即可求導.【詳解】,故選:B.9、D【解析】利用兩角和的正切公式計算出正確答案.【詳解】.故選:D10、D【解析】計算,然后等價于在(0,+∞)由2個不同的實數(shù)根,然后計算即可.【詳解】的定義域是(0,+∞),,若函數(shù)有兩個不同的極值點,則在(0,+∞)由2個不同的實數(shù)根,故,解得:,故選:D.【點睛】本題考查根據函數(shù)極值點個數(shù)求參,考查計算能力以及思維轉變能力,屬基礎題.11、A【解析】利用導數(shù)求得的單調區(qū)間,結合函數(shù)值確定正確選項.【詳解】由,可得函數(shù)的減區(qū)間為,增區(qū)間為,當時,,可得選項為A故選:A12、B【解析】作出不等式組對應的平面區(qū)域,然后根據線性規(guī)劃的幾何意義求得答案.【詳解】作出不等式組所對應的可行域如圖三角形陰影部分,平行移動直線直線,可以看到當移動過點A時,在y軸上的截距最小,聯(lián)立,解得,當且僅當動直線即過點時,取得最小值為,故選:B二、填空題:本題共4小題,每小題5分,共20分。13、128【解析】先求均值,再由方差公式計算【詳解】由已知,所以,故答案為:14、【解析】首先構造二面角的平面角,如圖,再分別在和中求解.【詳解】作,且,連結,,,,平面且,四邊形時平行四邊形,,平面,平面,中,,中,.故答案為:15、8【解析】設,,,,由可得,根據導數(shù)的幾何意義求得兩切線的方程,聯(lián)立求得點的坐標,再根到準線的距離轉化為到焦點的距離,三點共線時距離最小,進而求出最小值【詳解】解:設,,,,由可得,所以,所以直線,的方程分別為:,,聯(lián)立,解得,即,,又有在準線上,所以,所以,設直線的方程為:,代入拋物線的方程可得:,可得,所以可得,即直線恒過點,即直線恒過焦點,即直的方程為:,代入拋物線的方程:,,所以,點到準線的距離與點到準線的距離之和,所以當時,距離之和最小且為8,這時直線平行于軸故答案為:816、【解析】根據題意,求得△的三條邊長,在三角形中求邊邊上的高線即可.【詳解】根據題意,延長交于點,連接,如下所示:在△中,容易知:;同理,,滿足,設點到直線的距離為,由等面積法可知:,解得,即點到直線的距離是.故答案為:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)函數(shù)在上遞增,在上遞減,極大值為,無極小值(2)【解析】(1)求出函數(shù)的導函數(shù),再根據導數(shù)的符號求得單調區(qū)間,再根據極值的定義即可得解;(2)若存在,使不等式成立,問題轉化為,令,,利用導數(shù)求出函數(shù)的最大值即可得出答案.【小問1詳解】解:當時,,則,當時,,當時,,所以函數(shù)在上遞增,在上遞減,所以函數(shù)的極大值為,無極小值;【小問2詳解】解:若存在,使不等式成立,則,即,則問題轉化為,令,,,當時,,當時,,所以函數(shù)在遞增,在上遞減,所以,所以.18、(1)(2)存在,或【解析】(1)由題意,設圓心,由圓與兩直線相切,可得圓心到兩直線的距離都等于圓的半徑,進而可求,然后求出半徑即可得答案;(2)假設圓上存在點滿足,利用向量數(shù)量積的坐標運算化簡,再聯(lián)立圓的方程即可求解.【小問1詳解】解:因為圓與軸的交點分別為,,所以圓心在弦的垂直平分線上,設圓心,又圓與直線,都相切,所以,解得,所以圓心,半徑,所以圓的方程為;【小問2詳解】解:假設圓上存在點滿足,則,即①,又,即②,聯(lián)立①②可得或,所以存在點或滿足.19、(1);(2)【解析】(1)根據條件求出即可;(2),然后利用等差數(shù)列的求和公式求出答案即可.【詳解】(1)且,,(2)20、(1)an=2n(2)100【解析】(1)由等差數(shù)列的通項公式列出方程組求解即可;(2)由裂項相消求和法得出,再由不等式的性質得出n的最小值.【小問1詳解】設等差數(shù)列{an}的公差為d,依題意有解得,所以an=2n.【小問2詳解】由(1)得,則,所以因為,即,解得n>99,所以n的最小值為100.21、(1)(2)①;②證明見解析,定點的坐標為【解析】(1)由所給條件確定基本量即可.(2)①代入消元,韋達定理整體思想,列出關于的方程從而得解;②由已知可知,得到關于、的一次關系式可得證.【小問1詳解】由已知橢圓的右焦點坐標為,,所以,橢圓的方程:【小問2詳解】①將與橢圓方程聯(lián)立得.設,,則,解得,∴,,點到直線的距離為,∴,解得(舍去負值),∴.②設,,將與橢圓方程聯(lián)立,得,當時,∴,,,若軸上任意一點到直線與的距離均相等,則軸為直線與的夾角的平分線,∴,即,∴.∴,解得.∴.∴直線恒過

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論