2026屆湖北省天門、仙桃、潛江高二上數(shù)學期末聯(lián)考試題含解析_第1頁
2026屆湖北省天門、仙桃、潛江高二上數(shù)學期末聯(lián)考試題含解析_第2頁
2026屆湖北省天門、仙桃、潛江高二上數(shù)學期末聯(lián)考試題含解析_第3頁
2026屆湖北省天門、仙桃、潛江高二上數(shù)學期末聯(lián)考試題含解析_第4頁
2026屆湖北省天門、仙桃、潛江高二上數(shù)學期末聯(lián)考試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2026屆湖北省天門、仙桃、潛江高二上數(shù)學期末聯(lián)考試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已如雙曲線(,)的左、右焦點分別為,,過的直線交雙曲線的右支于A,B兩點,若,且,則該雙曲線的離心率為()A. B.C. D.2.命題:“x>0,都有x2-x+1≤0”的否定是()A.x>0,使得x2-x+1≤0 B.x>0,使得x2-x+1>0C.x>0,都有x2-x+1>0 D.x≤0,都有x2-x+1>03.若拋物線與直線:相交于兩點,則弦的長為()A.6 B.8C. D.4.古希臘數(shù)學家阿波羅尼斯的著作《圓錐曲線論》是古代世界光輝的科學成果,它將圓錐曲線的性質(zhì)網(wǎng)羅殆盡,幾乎使后人沒有插足的余地.他證明過這樣一個命題:平面內(nèi)與兩定點距離的比為常數(shù)且的點的軌跡是圓,后人將之稱為阿波羅尼斯圓.現(xiàn)有橢圓為橢圓長軸的端點,為橢圓短軸的端點,,分別為橢圓的左右焦點,動點滿足面積的最大值為面積的最小值為,則橢圓的離心率為()A. B.C. D.5.橢圓的焦點為、,上頂點為,若,則()A B.C. D.6.橢圓上的點P到直線x+2y-9=0的最短距離為()A. B.C. D.7.在中,角,,所對的邊分別為,,,若,則的形狀為()A.銳角三角形 B.直角三角形C.鈍角三角形 D.不確定8.點到直線的距離為2,則的值為()A.0 B.C.0或 D.0或9.已知,,且,則()A. B.C. D.10.如圖,在四面體中,,,,點為的中點,,則()A. B.C. D.11.函數(shù)的定義域為,其導(dǎo)函數(shù)的圖像如圖所示,則函數(shù)極值點的個數(shù)為()A.2 B.3C.4 D.512.設(shè)函數(shù),則和的值分別為()A.、 B.、C.、 D.、二、填空題:本題共4小題,每小題5分,共20分。13.已知橢圓的焦點分別為,A為橢圓上一點,則________14.已知函數(shù)滿足:①是奇函數(shù);②當時,.寫出一個滿足條件的函數(shù)________15.已知直線與雙曲線交于兩點,則該雙曲線的離心率的取值范圍是______16.已知正方體,點在底面內(nèi)運動,且始終保持平面,設(shè)直線與底面所成的角為,則的最大值為______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知圓的圓心在直線,且與直線相切于點.(1)求圓的方程;(2)直線過點且與圓相交,所得弦長為,求直線的方程.18.(12分)已知橢圓C:的長軸長為,P是橢圓上異于頂點的一個動點,O為坐標原點,A為橢圓C的上頂點,Q為PA的中點,且直線PA與直線OQ的斜率之積恒為-2.(1)求橢圓C的方程;(2)若斜率為k且過上焦點F的直線l與橢圓C相交于M,N兩點,當點M,N到y(tǒng)軸距離之和最大時,求直線l的方程.19.(12分)已知為數(shù)列的前項和,且(1)求數(shù)列的通項公式;(2)若,求數(shù)列的前項和(3)設(shè),若不等式對一切恒成立,求實數(shù)取值范圍20.(12分)2021年10月16日,搭載“神舟十三號”的火箭發(fā)射升空,有很多民眾通過手機、電視等方式觀看有關(guān)新聞.某機構(gòu)將關(guān)注這件事的時間在2小時以上的人稱為“天文愛好者”,否則稱為“非天文愛好者”,該機構(gòu)通過調(diào)查,從參與調(diào)查的人群中隨機抽取100人進行分析,得到下表(單位:人):天文愛好者非天文愛好者合計女203050男351550合計5545100(1)能否有99%的把握認為“天文愛好者”或“非天文愛好者”與性別有關(guān)?(2)現(xiàn)從抽取的女性人群中,按“天文愛好者”和“非天文愛好者”這兩種類型進行分層抽樣抽取5人,然后再從這5人中隨機選出3人,記其中“天文愛好者”的人數(shù)為X,求X的分布列和數(shù)學期望附:,其中n=a+b+c+d0.100.050.0100.0050.0012.7063.8416.6357.87910.82821.(12分)等差數(shù)列{an}的前n項和記為Sn,且.(1)求數(shù)列{an}的通項公式an(2)記數(shù)列的前n項和為Tn,若,求n的最小值.22.(10分)等比數(shù)列中,,(1)求的通項公式;(2)記為的前n項和.若,求m的值

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】先作輔助線,設(shè)出邊長,結(jié)合題干條件得到,,利用勾股定理得到關(guān)于的等量關(guān)系,求出離心率.【詳解】連接,設(shè),則根據(jù)可知,,因為,由勾股定理得:,由雙曲線定義可知:,,解得:,,從而,解得:,所以,,由勾股定理得:,從而,即該雙曲線的離心率為.故選:A2、B【解析】全稱命題的否定是特稱命題,把任意改為存在,把結(jié)論否定.【詳解】“x>0,都有x2-x+1≤0”的否定是“x>0,使得x2-x+1>0”.故選:B3、B【解析】由題得拋物線的焦點坐標為剛好在直線上,再聯(lián)立直線和拋物線的方程,利用韋達定理和拋物線的定義求解.【詳解】解:由題得.由題得拋物線的焦點坐標為剛好在直線上,設(shè),聯(lián)立直線和拋物線方程得,所以.所以.故選:B4、A【解析】由題可得動點M的軌跡方程,可得,,即求.【詳解】設(shè),,由,可得=2,化簡得.∵△MAB面積的最大值為面積的最小值為,∴,,∴,即,∴故選:A5、C【解析】分析出為等邊三角形,可得出,進而可得出關(guān)于的等式,即可解得的值.【詳解】在橢圓中,,,,如下圖所示:因為橢圓的上頂點為點,焦點為、,所以,,為等邊三角形,則,即,因此,.故選:C.6、A【解析】與已知直線平行,與橢圓相切的直線有二條,一條距離最短,一條距離最長,利用相切,求出直線的常數(shù)項,再計算平行線間的距離即可.【詳解】設(shè)與已知直線平行,與橢圓相切的直線為,則所以所以橢圓上點P到直線的最短距離為故選:A7、C【解析】由正弦定理得出,再由余弦定理得出,從而判斷為鈍角得出的形狀.【詳解】因為,所以,所以,所以的形狀為鈍角三角形.故選:C8、C【解析】根據(jù)點到直線的距離公式即可得出答案.【詳解】解:點到直線的距離為,解得或.故選:C.9、D【解析】利用空間向量共線的坐標表示可求得、的值,即可得解.【詳解】因為,則,所以,,,因此,.故選:D10、B【解析】利用插點的方法,將歸結(jié)到題目中基向量中去,注意中線向量的運用.【詳解】.故選:B.11、C【解析】根據(jù)給定的導(dǎo)函數(shù)的圖象,結(jié)合函數(shù)的極值的定義,即可求解.【詳解】如圖所示,設(shè)導(dǎo)函數(shù)的圖象與軸的交點分別為,根據(jù)函數(shù)的極值的定義可知在該點處的左右兩側(cè)的導(dǎo)數(shù)符號相反,可得為函數(shù)的極大值點,為函數(shù)的極小值點,所以函數(shù)極值點的個數(shù)為4個.故選:C.12、D【解析】求得,即可求得、的值.【詳解】,則,則,故,.故選:D.二、填空題:本題共4小題,每小題5分,共20分。13、4【解析】直接利用橢圓的定義即可求解.【詳解】因為橢圓的焦點分別為,A為橢圓上一點,所以.故答案為:414、(答案不唯一)【解析】利用函數(shù)的奇偶性及其單調(diào)性寫出函數(shù)解析式即可.【詳解】結(jié)合冪函數(shù)的性質(zhì)可知是奇函數(shù),當時,,則符合上述兩個條件,故答案為:(答案不唯一).15、【解析】分析可知,由可求得結(jié)果.【詳解】雙曲線的漸近線方程為,由題意可知,.故答案為:.16、【解析】畫出立體圖形,因為面面,在底面內(nèi)運動,且始終保持平面,可得點在線段上運動,因為面面,直線與底面所成的角和直線與底面所成的角相等,即可求得答案.【詳解】連接和,面面在底面內(nèi)運動,且始終保持平面可得點在線段上運動,面面,直線與底面所成的角和直線與底面所成的角相等面直線與底面所成的角為:有圖像可知:長是定值,當最短時,,即最大,即角最大設(shè)正方體的邊長為,故故答案為:【點睛】本題考查了求線面角的最大值,解題是掌握線面角的定義和處理動點問題時,應(yīng)畫出圖形,尋找?guī)缀侮P(guān)系,考查了分析能力和計算能力,屬于難題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)或【解析】(1)分析可知圓心在直線上,聯(lián)立兩直線方程,可得出圓心的坐標,計算出圓的半徑,即可得出圓的方程;(2)利用勾股定理求出圓心到直線的距離,然后對直線的斜率是否存在進行分類討論,設(shè)出直線的方程,利用點到直線的距離公式求出參數(shù),即可得出直線的方程.【小問1詳解】解:過點且與直線垂直的直線的方程為,由題意可知,圓心即為直線與直線的交點,聯(lián)立,解得,故圓的半徑為,因此,圓的方程為.【小問2詳解】解:由勾股定理可知,圓心到直線的距離為.當直線的斜率不存在時,直線的方程為,圓心到直線的距離為,滿足條件;當直線的斜率存在時,設(shè)直線的方程為,即,由題意可得,解得,此時,直線的方程為,即.綜上所述,直線的方程為或.18、(1)(2)【解析】(1)設(shè)點,求出直線、直線的斜率相乘可得,結(jié)合可得答案;(2)設(shè)直線l的方程為與橢圓方程聯(lián)立,代入得,設(shè),再利用基本不等式可得答案.【小問1詳解】由題意可得,,即,則,設(shè)點,∵Q為的中點,∴,∴直線斜率,直線的斜率,∴,又∵,∴,則,解得,∴橢圓C的方程為.【小問2詳解】由(1)知,設(shè)直線l的方程為,聯(lián)立化簡得,,設(shè),則,易知M,N到y(tǒng)軸的距離之和為,,設(shè),∴,當且僅當即時等號成立,所以當時取得最大值,此時直線l的方程為.19、(1);(2);(3).【解析】(1)利用的關(guān)系,根據(jù)等比數(shù)列的定義求通項公式.(2)由(1)可得,應(yīng)用裂項相消法求.(3)應(yīng)用錯位相減法求得,由題設(shè)有,討論為奇數(shù)、偶數(shù)求的取值范圍【小問1詳解】當時,,可得,當時,,可得,∴是首項、公比都為的等比數(shù)列,故.【小問2詳解】由(1),,∴.【小問3詳解】由題設(shè),,∴,則,∴,由對一切恒成立,令,則,∴數(shù)列單調(diào)遞減,∴當為奇數(shù),恒成立且在上遞減,則,當為偶數(shù),恒成立且在上遞增,則,綜上,.20、(1)有(2)分布列見解析,【解析】(1)依題意由列聯(lián)表計算出卡方,與參考數(shù)值比較,即可判斷;(2)按照分層抽樣得到有2人為“天文愛好者”,有3人為“非天文愛好者”,記“天文愛好者”的人數(shù)為X,則X的可能值為0,1,2,即可求出所對應(yīng)的概率,從而得到分布列與數(shù)學期望;【小問1詳解】解:由題意,所以有99%的把握認為“天文愛好者”或“非天文愛好者”與性別有關(guān).【小問2詳解】解:抽取的100人中女性人群有50人,其中“天文愛好者”有20人,“非天文愛好者”有30人,所以按分層抽樣在50個女性人群中抽取5人,則有2人為“天文愛好者”,有3人為“非天文愛好者”再從這5人中隨機選出3人,記其中“天文愛好者”的人數(shù)為X,則X的可能值為0,1,2,∴,,,X的分布列如下表:X012P21、(1)an=2n(2)100【解析】(1)由等差數(shù)列的通項公式列出方程

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論