版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
2026屆黑龍江省大慶十中高二上數(shù)學期末綜合測試試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在的展開式中,只有第4項的二項式系數(shù)最大,且所有項的系數(shù)和為0,則含的項的系數(shù)為()A.-20 B.-15C.-6 D.152.正方體的棱長為,為側(cè)面內(nèi)動點,且滿足,則△面積的最小值為()A. B.C. D.3.在正方體中,,則()A. B.C. D.4.已知定義在區(qū)間上的函數(shù),,若以上兩函數(shù)的圖像有公共點,且在公共點處切線相同,則m的值為()A.2 B.5C.1 D.05.已知F是雙曲線的右焦點,過F且垂直于x軸的直線交E于A,B兩點,若E的漸近線上恰好存在四個點,,,,使得,則E的離心率的取值范圍是()A. B.C. D.6.已知等差數(shù)列的公差為,則“”是“數(shù)列為單調(diào)遞增數(shù)列”的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件7.瑞士數(shù)學家歐拉1765年在其所著的《三角形的幾何學》一書中提出:任意三角形的外心、重心、垂心在同一條直線上,后人稱這條直線為歐拉線.已知的頂點,,其歐拉線方程為,則頂點的坐標可以是()A. B.C. D.8.已知等比數(shù)列中,,,則該數(shù)列的公比為()A. B.C. D.9.若直線與直線垂直,則a的值為()A.2 B.1C. D.10.七巧板是一種古老的中國傳統(tǒng)智力玩具,顧名思義,是由七塊板組成的.這七塊板可拼成許多圖形(1600種以上),如圖所示,某同學用七巧板拼成了一個“鴿子”形狀,若從“鴿子”身上任取一點,則取自“鴿子頭部”(圖中陰影部分)的概率是()A. B.C. D.11.拋物線的焦點到準線的距離為()A. B.C. D.112.對任意實數(shù)k,直線與圓的位置關(guān)系是()A.相交 B.相切C.相離 D.與k有關(guān)二、填空題:本題共4小題,每小題5分,共20分。13.如圖,在邊長為2的正方形ABCD中,點E,F(xiàn)分別是AB,BC的中A點,將,,,分別沿DE,EF,DF折起,使得A,B,C三點重合于點P,則四面體的外接球表面積為____________.14.某校學生在研究民間剪紙藝術(shù)時,發(fā)現(xiàn)剪紙時經(jīng)常會沿紙的某條對稱軸把紙對折,規(guī)格為的長方形紙,對折1次共可以得到,兩種規(guī)格的圖形,它們的面積之和,對折2次共可以得到,,三種規(guī)格的圖形,它們的面積之和,以此類推,則對折4次共可以得到不同規(guī)格圖形的種數(shù)為______;如果對折次,那么______.15.知函數(shù),若函數(shù)有兩個不同的零點,則實數(shù)的取值范圍為_____________.16.在梯形中,,,.將梯形繞所在的直線旋轉(zhuǎn)一周而形成的曲面所圍成的幾何體的體積為______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖1,在邊長為4的等邊三角形ABC中,D,E,F(xiàn)分別是AB,AC,BC的中點,沿DE把折起,得到如圖2所示的四棱錐.(1)證明:平面.(2)若二面角的大小為60°,求平面與平面的夾角的大小.18.(12分)已知圓:,定點,Q為圓上的一動點,點P在半徑CQ上,且,設點P的軌跡為曲線E.(1)求曲線E的方程;(2)過點的直線交曲線E于A,B兩點,過點H與AB垂直的直線與x軸交于點N,當取最大值時,求直線AB的方程.19.(12分)設數(shù)列是公比為正整數(shù)的等比數(shù)列,滿足,,設數(shù)列滿足,.(1)求數(shù)列的通項公式;(2)求證:數(shù)列是等差數(shù)列,并求數(shù)列的通項公式;(3)已知數(shù)列,設,求數(shù)列的前項和.20.(12分)已知{an}是公差不為零的等差數(shù)列,a1=1,且a1,a3,a9成等比數(shù)列.(Ⅰ)求數(shù)列{an}的通項;(Ⅱ)求數(shù)列的前n項和Sn.21.(12分)已知橢圓左右焦點分別為,,離心率為,P是橢圓上一點,且面積的最大值為1.(1)求橢圓的方程;(2)過的直線交橢圓于M,N兩點,求的取值范圍.22.(10分)已知中心在坐標原點O的橢圓,左右焦點分別為,,離心率為,M,N分別為橢圓的上下頂點,且滿足.(1)求橢圓方程;(2)已知點C滿足,點T在橢圓上(T異于橢圓的頂點),直線NT與以C為圓心的圓相切于點P,若P為線段NT的中點,求直線NT的方程;(3)過橢圓內(nèi)的一點D(0,t),作斜率為k的直線l,與橢圓交于A,B兩點,直線OA,OB的斜率分別是,,若對于任意實數(shù)k,存在實數(shù)m,使得,求實數(shù)m的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】先由只有第4項的二項式系數(shù)最大,求出n=6;再由展開式的所有項的系數(shù)和為0,用賦值法求出,用通項公式求出的項的系數(shù).【詳解】∵在的展開式中,只有第4項的二項式系數(shù)最大,∴在的展開式有7項,即n=6;而展開式的所有項的系數(shù)和為0,令x=1,代入,即,所以.∴是展開式的通項公式為:,要求含的項,只需,解得,所以系數(shù)為.故選:C2、B【解析】建立空間直角坐標系如圖所示,設由,得出點的軌跡方程,由幾何性質(zhì)求得,再根據(jù)垂直關(guān)系求出△面積的最小值【詳解】以點為原點,分別為軸建立空間直角坐標系,如圖所示:則,,設所以,得,所以因為平面,所以故△面積的最小值為故選:B3、A【解析】根據(jù)空間向量基本定理,結(jié)合空間向量加法的幾何意義進行求解即可.【詳解】因為,而,所以有,故選:A4、C【解析】設兩曲線與公共點為,分別求得函數(shù)的導數(shù),根據(jù)兩函數(shù)的圖像有公共點,且在公共點處切線相同,列出等式,求得公共點的坐標,代入函數(shù),即可求解.【詳解】根據(jù)題意,設兩曲線與公共點為,其中,由,可得,則切線的斜率為,由,可得,則切線斜率為,因為兩函數(shù)的圖像有公共點,且在公共點處切線相同,所以,解得或(舍去),又由,即公共點的坐標為,將點代入,可得.故選:C.5、D【解析】由題意以AB為直徑的圓M與雙曲線E的漸近線有四個不同的交點,則必有,又當圓M經(jīng)過原點時此時以AB為直徑的圓M上與雙曲線E的漸近線有三個不同的交點,不滿足,從而得出答案.【詳解】由題意,由得,雙曲線的漸近線方程為所以,由,可知,,,在以AB為直徑的圓M上,圓的半徑為即以AB為直徑的圓M與雙曲線E的漸近線有四個不同的交點當圓M與漸近線相切時,圓心到漸近線的距離,則必有,即,則雙曲線E的離心率,所以又當圓M經(jīng)過原點時,,解得E的離心率為,此時以AB為直徑圓M與雙曲線E的漸近線有三個不同的交點,不滿足條件.所以E的離心率的取值范圍是.故選:D6、C【解析】利用等差數(shù)列的定義和數(shù)列單調(diào)性的定義判斷可得出結(jié)論.【詳解】若,則,即,此時,數(shù)列為單調(diào)遞增數(shù)列,即“”“數(shù)列為單調(diào)遞增數(shù)列”;若等差數(shù)列為單調(diào)遞增數(shù)列,則,即“”“數(shù)列為單調(diào)遞增數(shù)列”.因此,“”是“數(shù)列為單調(diào)遞增數(shù)列”的充分必要條件.故選:C.7、C【解析】設出點C坐標,求出的重心并代入歐拉線方程,驗證并排除部分選項,余下選項再由外心、垂心驗證判斷作答.【詳解】設頂點的坐標為,則的重心坐標為,依題意,,整理得:,對于A,當時,,不滿足題意,排除A;對于D,當時,,不滿足題意,排除D;對于B,當時,,對于C,當時,,直線AB的斜率,線段AB中點,線段AB中垂線方程:,即,由解得:,于是得的外心,若點,則直線BC的斜率,線段BC中點,該點與點M確定直線斜率為,顯然,即點M不在線段BC的中垂線上,不滿足題意,排除B;若點,則直線BC的斜率,線段BC中點,線段BC中垂線方程為:,即,由解得,即點為的外心,并且在直線上,邊AB上的高所在直線:,即,邊BC上的高所在直線:,即,由解得:,則的垂心,此時有,即的垂心在直線上,選項C滿足題意.故選:C【點睛】結(jié)論點睛:的三頂點,則的重心為.8、C【解析】設等比數(shù)列的公比為,可得出,即可得解.【詳解】設等比數(shù)列的公比為,可得出.故選:C.9、A【解析】根據(jù)兩條直線垂直的條件列方程,解方程求得的值.【詳解】由于直線與直線垂直,所以,解得.故選:A10、C【解析】設正方形邊長為1,求出七巧板中“4”這一塊的面積,然后計算概率【詳解】設正方形邊長為1,由正方形中七巧板形狀知“4”這一塊是正方形,邊長為,面積為,所以概率為故選:C11、B【解析】由可得拋物線標椎方程為:,由焦點和準線方程即可得解.【詳解】由可得拋物線標準方程為:,所以拋物線的焦點為,準線方程為,所以焦點到準線的距離為,故選:B【點睛】本題考了拋物線標準方程,考查了焦點和準線相關(guān)基本量,屬于基礎題.12、A【解析】判斷直線恒過定點,可知定點在圓內(nèi),即可判斷直線與圓的位置關(guān)系.【詳解】由可知,即該圓的圓心坐標為,半徑為,由可知,則該直線恒過定點,將點代入圓的方程可得,則點在圓內(nèi),則直線與圓的位置關(guān)系為相交.故選:.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由題意在四面體中兩兩垂直,將該四面體補成長方體,則長方體與四面體的外接球相同,從而可求解.【詳解】將直角,,,分別沿DE,EF,DF折起,使得A,B,C三點重合于點P,所以在四面體中兩兩垂直,將該四面體補成長方體,如圖.則長方體與四面體的外接球相同.長方體的外接球在其對角線的中點處.由題意可得,則長方體的外接球的半徑為所以四面體的外接球表面積為故答案為:14、①.5②.【解析】(1)按對折列舉即可;(2)根據(jù)規(guī)律可得,再根據(jù)錯位相減法得結(jié)果.【詳解】(1)由對折2次共可以得到,,三種規(guī)格的圖形,所以對著三次的結(jié)果有:,共4種不同規(guī)格(單位;故對折4次可得到如下規(guī)格:,,,,,共5種不同規(guī)格;(2)由于每次對著后的圖形的面積都減小為原來的一半,故各次對著后的圖形,不論規(guī)格如何,其面積成公比為的等比數(shù)列,首項為120,第n次對折后的圖形面積為,對于第n此對折后的圖形的規(guī)格形狀種數(shù),根據(jù)(1)的過程和結(jié)論,猜想為種(證明從略),故得猜想,設,則,兩式作差得:,因此,.故答案為:;.【點睛】方法點睛:數(shù)列求和的常用方法:(1)對于等差等比數(shù)列,利用公式法可直接求解;(2)對于結(jié)構(gòu),其中是等差數(shù)列,是等比數(shù)列,用錯位相減法求和;(3)對于結(jié)構(gòu),利用分組求和法;(4)對于結(jié)構(gòu),其中是等差數(shù)列,公差為,則,利用裂項相消法求和.解答題15、【解析】根據(jù)分段函數(shù)的性質(zhì),結(jié)合冪函數(shù)、一次函數(shù)的單調(diào)性判斷零點的分布,進而求m的范圍.【詳解】由解析式知:在上為增函數(shù)且,在上,時為單調(diào)函數(shù),時無零點,故要使有兩個不同的零點,即兩側(cè)各有一個零點,所以在上必遞減且,則,可得.故答案為:16、##【解析】畫出幾何體的直觀圖,利用已知條件,求解幾何體的體積即可【詳解】梯形ABCD:由題意可知空間幾何體的直觀圖如圖:旋轉(zhuǎn)體是底面半徑為1,高為2的圓柱,挖去一個相同底面高為1的圓錐,幾何體的體積為:故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2).【解析】(1)由結(jié)合線面平行的判定即可推理作答.(2)取DE的中點M,連接,F(xiàn)M,證明平面平面,再建立空間直角坐標系,借助空間向量推理、計算作答.【小問1詳解】在中,因為E,F(xiàn)分別是AC,BC的中點,所以,則圖2中,,而平面,平面,所以平面.【小問2詳解】依題意,是正三角形,四邊形是菱形,取DE的中點M,連接,F(xiàn)M,如圖,則,,即是二面角的平面角,,取中點N,連接,則有,在中,由余弦定理得:,于是有,,即,而,,,平面,則平面,又平面,從而有平面平面,因平面平面,平面,因此,平面,過點N作,則兩兩垂直,以點N為原點,射線分別為x,y,z軸非負半軸建立空間直角坐標系,則,,,,,,,設平面的法向量,則,令,得,設平面的法向量,則,令,得,顯然有,即,所以平面與平面的夾角為.【點睛】方法點睛:利用向量法求二面角:(1)找法向量,分別求出兩個半平面所在平面的法向量,然后求得法向量的夾角,結(jié)合圖形得到二面角的大?。?2)找與交線垂直的直線的方向向量,分別在二面角的兩個半平面內(nèi)找到與交線垂直且以垂足為起點的直線的方向向量,則這兩個向量的夾角就是二面角的平面角18、(1)(2)或【解析】(1)結(jié)合已知條件可得到點P在線段QF的垂直平分線上,然后利用橢圓定義即可求解;(2)結(jié)合已知條件設出直線的方程,然后聯(lián)立橢圓方程,利用弦長公式求出,再設出直線NH的方程,求出N點坐標,進而求出,然后表示出,再利用換元法和均值不等式求解即可.【小問1詳解】設點的坐標為,∵,∴點P在線段QF垂直平分線上,∴,又∵,∴∴點P在以C,F(xiàn)為焦點的橢圓上,且,∴,∴曲線的方程為:.【小問2詳解】設直線AB方程為,,由,解得,,解得,由韋達定理可知,,,∴∵AB與HN垂直,∴直線NH的方程為,令,得,∴,又由,∴,∴設則∴當且僅當即時等號成立,有最大值,此時滿足,故,所以直線AB的方程為:,即或.19、(1)(2)證明見解析,(3)【解析】(1)根據(jù)等比數(shù)列列出方程組求解首項、公比即可得解;(2)化簡后得,可證明數(shù)列是等差數(shù)列,即可得出,再求出即可;(3)利用錯位相減法求出數(shù)列的和.【小問1詳解】設公比為,由條件可知,,所以;【小問2詳解】,又,所以,所以數(shù)列是以為首項,為公差等差數(shù)列,所以,所以.【小問3詳解】,,兩式相減可得,,.20、(Ⅰ)(Ⅱ)【解析】本試題考查了等差數(shù)列與等比數(shù)列的概念以及等比數(shù)列的前n項和公式等基本知識(Ⅰ)由題設知公差由成等比數(shù)列得解得(舍去),故的通項(Ⅱ)由(Ⅰ)知,由
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026河南駐馬店市強力建材有限公司招聘8人考試備考題庫及答案解析
- 2026重慶醫(yī)科大學附屬康復醫(yī)院大渡口中醫(yī)科中醫(yī)康復科護理招聘1人考試備考題庫及答案解析
- 2026年馬鞍山安徽和州城市建設集團有限公司公開招聘工作人員1名考試備考試題及答案解析
- 2026浙江金華永康市金匯醫(yī)藥有限公司招聘工作人員3人考試參考試題及答案解析
- 2026內(nèi)蒙古赤峰市就業(yè)見習計劃招募考試參考題庫及答案解析
- 2026湖北宜昌市長陽土家族自治縣事業(yè)單位急需緊缺人才引進招聘42人(華中科技大學站)考試備考題庫及答案解析
- 2026年蕪湖市紫云英職業(yè)培訓學校有限公司招聘工作人員4名考試備考試題及答案解析
- 2026年南寧市明秀東路小學教育集團春季學期編外教師招聘若干人筆試備考試題及答案解析
- 2026年合肥市行知實驗中學教師招聘考試備考試題及答案解析
- 2026廣東云浮市人民醫(yī)院招聘63人考試備考試題及答案解析
- 施工交通疏導方案
- 移動通信基站天線基礎知識專題培訓課件
- 1例低血糖昏迷的護理查房
- 《軍隊政治工作手冊》出版
- 電子商務專業(yè)教師教學創(chuàng)新團隊建設方案
- 智慧校園網(wǎng)投資建設運營方案
- 2023年中國海洋大學環(huán)科院研究生培養(yǎng)方案
- GB/T 16927.1-2011高電壓試驗技術(shù)第1部分:一般定義及試驗要求
- DB32∕T 4107-2021 民用建筑節(jié)能工程熱工性能現(xiàn)場檢測標準
- OECD稅收協(xié)定范本中英對照文本
- 熱功能與復合材料課件
評論
0/150
提交評論