2026屆山東省濱州市鄒平一中數(shù)學(xué)高二上期末質(zhì)量檢測試題含解析_第1頁
2026屆山東省濱州市鄒平一中數(shù)學(xué)高二上期末質(zhì)量檢測試題含解析_第2頁
2026屆山東省濱州市鄒平一中數(shù)學(xué)高二上期末質(zhì)量檢測試題含解析_第3頁
2026屆山東省濱州市鄒平一中數(shù)學(xué)高二上期末質(zhì)量檢測試題含解析_第4頁
2026屆山東省濱州市鄒平一中數(shù)學(xué)高二上期末質(zhì)量檢測試題含解析_第5頁
已閱讀5頁,還剩9頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2026屆山東省濱州市鄒平一中數(shù)學(xué)高二上期末質(zhì)量檢測試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知集合,則()A. B.C. D.2.已知函數(shù)在區(qū)間有且僅有2個極值點(diǎn),則m的取值范圍是()A. B.C. D.3.拋物線的焦點(diǎn)到準(zhǔn)線的距離為()A. B.C. D.4.直線經(jīng)過兩個定點(diǎn),,則直線傾斜角大小是()A. B.C. D.5.已知隨機(jī)變量服從正態(tài)分布,若,則()A.0.2 B.0.24C.0.28 D.0.326.圓的圓心坐標(biāo)與半徑分別是()A. B.C. D.7.已知F是拋物線的焦點(diǎn),直線l是拋物線的準(zhǔn)線,則F到直線l的距離為()A.2 B.4C.6 D.88.拋物線的焦點(diǎn)到準(zhǔn)線的距離是A.2 B.4C. D.9.如圖,在四面體中,,,,分別為,,,的中點(diǎn),則化簡的結(jié)果為()A. B.C. D.10.空間四點(diǎn)共面,但任意三點(diǎn)不共線,若為該平面外一點(diǎn)且,則實(shí)數(shù)的值為()A. B.C. D.11.如圖,是對某位同學(xué)一學(xué)期次體育測試成績(單位:分)進(jìn)行統(tǒng)計得到的散點(diǎn)圖,關(guān)于這位同學(xué)的成績分析,下列結(jié)論錯誤的是()A.該同學(xué)的體育測試成績總的趨勢是在逐步提高,且次測試成績的極差超過分B.該同學(xué)次測試成績的眾數(shù)是分C.該同學(xué)次測試成績的中位數(shù)是分D.該同學(xué)次測試成績與測試次數(shù)具有相關(guān)性,且呈正相關(guān)12.在三棱錐中,,,,若,,則()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.過點(diǎn)的直線與拋物線相交于,兩點(diǎn),,則直線的方程為______.14.如圖,長方體中,,,,,分別是,,的中點(diǎn),則異面直線與所成角為__.15.展開式中的系數(shù)是___________.16.已知為拋物線的焦點(diǎn),為拋物線上的任意一點(diǎn),點(diǎn),則的最小值為______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知數(shù)列是公差為2的等差數(shù)列,它的前n項和為,且,,成等比數(shù)列(1)求的通項公式(2)求數(shù)列的前n項和18.(12分)已知函數(shù)(其中a常數(shù))(1)求的單調(diào)遞增區(qū)間;(2)若,時,的最小值為4,求a的值19.(12分)在平面直角坐標(biāo)系xOy中,曲線的參數(shù)方程為,(t為參數(shù)),以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)求曲線的普通方程和曲線的直角坐標(biāo)方程;(2)已知,曲線與曲線相交于A,B兩點(diǎn),求.20.(12分)已知函數(shù).(1)求的單調(diào)遞增區(qū)間;(2)求在的最大值.21.(12分)已知各項均為正數(shù)的等比數(shù)列{}的前4項和為15,且.(1)求{}的通項公式;(2)若,記數(shù)列{}前n項和為,求.22.(10分)如圖,在四棱錐中,,為的中點(diǎn),連接.(1)求證:平面;(2)求平面與平面的夾角的余弦值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】解一元二次不等式求集合A,再由集合的交運(yùn)算求即可.【詳解】由題設(shè),,∴.故選:C.2、A【解析】根據(jù)導(dǎo)數(shù)的性質(zhì),結(jié)合余弦型函數(shù)的性質(zhì)、極值的定義進(jìn)行求解即可.【詳解】由,,因為在區(qū)間有且僅有2個極值點(diǎn),所以令,解得,因此有,故選:A3、C【解析】根據(jù)拋物線方程求出焦點(diǎn)坐標(biāo)與準(zhǔn)線方程,即可得解;【詳解】解:因為拋物線方程為,所以焦點(diǎn)坐標(biāo)為,準(zhǔn)線的方程為,所以焦點(diǎn)到準(zhǔn)線的距離為;故選:C4、A【解析】由兩點(diǎn)坐標(biāo)求出斜率,再得傾斜角【詳解】由已知直線的斜率為,所以傾斜角為故選:A5、C【解析】依據(jù)正態(tài)曲線的對稱性即可求得【詳解】由隨機(jī)變量服從正態(tài)分布,可知正態(tài)曲線的對稱軸為直線由,可得則,故故選:C6、C【解析】將圓的一般方程化為標(biāo)準(zhǔn)方程,即可得答案.【詳解】由題可知,圓的標(biāo)準(zhǔn)方程為,所以圓心為,半徑為3,故選.7、B【解析】根據(jù)拋物線定義即可求解【詳解】由得,所以F到直線l的距離為故選:B8、D【解析】因為拋物線方程可化為,所以拋物線的焦點(diǎn)到準(zhǔn)線的距離是,故選D.考點(diǎn):1、拋物線的標(biāo)準(zhǔn)方程;2、拋物線的幾何性質(zhì).9、C【解析】根據(jù)向量的加法和數(shù)乘的幾何意義,即可得到答案;【詳解】故選:C10、A【解析】由空間向量共面定理構(gòu)造方程求得結(jié)果.【詳解】空間四點(diǎn)共面,但任意三點(diǎn)不共線,,解得:.故選:A.11、C【解析】根據(jù)給定的散點(diǎn)圖,逐一分析各個選項即可判斷作答.【詳解】對于A,由散點(diǎn)圖知,8次測試成績總體是依次增大,極差為,A正確;對于B,散點(diǎn)圖中8個數(shù)據(jù)的眾數(shù)是48,B正確;對于C,散點(diǎn)圖中的8個數(shù)由小到大排列,最中間兩個數(shù)都是48,則次測試成績的中位數(shù)是分,C不正確;對于D,散點(diǎn)圖中8個點(diǎn)落在某條斜向上的直線附近,則次測試成績與測試次數(shù)具有相關(guān)性,且呈正相關(guān),D正確.故選:C12、B【解析】根據(jù)空間向量的基本定理及向量的運(yùn)算法則計算即可得出結(jié)果.【詳解】連接,因為,所以,因為,所以,所以,故選:B二、填空題:本題共4小題,每小題5分,共20分。13、##【解析】根據(jù)拋物線方程可得焦點(diǎn)坐標(biāo),進(jìn)而點(diǎn)P為拋物線的焦點(diǎn),設(shè),利用拋物線的定義可得,有軸,即可得出結(jié)果.【詳解】由題意知,拋物線的焦點(diǎn)坐標(biāo),又,所以點(diǎn)P為拋物線的焦點(diǎn),設(shè),由,由拋物線的定義得,解得,所以AB垂直與x軸,所以直線AB的方程為:.故答案為:14、【解析】以為原點(diǎn),為軸,為軸,為軸,建立空間直角坐標(biāo)系,利用向量法能求出異面直線與所成角.【詳解】解:以為原點(diǎn),為軸,為軸,為軸,建立空間直角坐標(biāo)系,,0,,,0,,,2,,,1,,,,設(shè)異面直線與所成角為,,異面直線與所成角為.故答案為:.15、【解析】根據(jù)二項展開式的通項公式,可知展開式中含的項,以及展開式中含的項,再根據(jù)組合數(shù)的運(yùn)算即可求出結(jié)果.【詳解】解:由題意可得,展開式中含的項為,而展開式中含的項為,所以的系數(shù)為.故答案為:.16、【解析】由拋物線的幾何性質(zhì)知:,由圖知為的最小值,求長度即可.【詳解】點(diǎn)是拋物線的焦點(diǎn),其準(zhǔn)線方程為,作于,作于,∴,當(dāng)且僅當(dāng)為與拋物線的交點(diǎn)時取得等號,∴的最小值為.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】(1)根據(jù)等差數(shù)列的通項公式,分別表示出與,由等比中項定義即可求得首項,進(jìn)而求得的通項公式(2)根據(jù)等差數(shù)列的首項與公差,求出的前n項和,進(jìn)而可知,再用裂項法可求得【詳解】(1)由題意,得,,所以由,得,解得,所以,即(2)由(1)知,則,,【點(diǎn)睛】本題考查了等差數(shù)列通項公式的應(yīng)用,等比中項的定義,裂項法求數(shù)列前n項和的簡單應(yīng)用,屬于基礎(chǔ)題18、(1);(2).【解析】(1)利用三角恒等變換思想化簡函數(shù)解析式為,然后解不等式,可得答案;(2)由計算出的取值范圍,利用正弦函數(shù)的基本性質(zhì)可求得函數(shù)的最小值,進(jìn)而可求得實(shí)數(shù)的值.【詳解】(1),令,解得.所以,函數(shù)的單調(diào)遞增區(qū)間為;(2)當(dāng)時,,所以,所以,解得.19、(1),(2)2【解析】(1)消參數(shù)即可得曲線的普通方程,利用極坐標(biāo)方程與直角坐標(biāo)方程之間的轉(zhuǎn)化關(guān)系式,從而曲線的直角坐標(biāo)方程;(2)將的參數(shù)方程代入的直角坐標(biāo)方程,得關(guān)于的一元二次方程,由韋達(dá)定理得,即可得的值.【小問1詳解】由,消去參數(shù),得,即,所以曲線的普通方程為.由,得,即,所以曲線的直角坐標(biāo)方程為【小問2詳解】將代入,整理得,則,令方程的兩個根為由韋達(dá)定理得,所以.20、(1)(2)【解析】(1)利用兩角和的余弦公式以及輔助角公式可得,再由正弦函數(shù)單調(diào)區(qū)間,整體代入即可求解.(2)根據(jù)三角函數(shù)的單調(diào)性即可求解.【小問1詳解】,,解得,所以函數(shù)的單調(diào)遞增區(qū)間為【小問2詳解】由(1),解得函數(shù)的單調(diào)遞減區(qū)間為,所以函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,,,所以函數(shù)的最大值為.21、(1)(2)【解析】(1)設(shè)正項的等比數(shù)列的公比為,根據(jù)題意列出方程組,求得的值,即可求得數(shù)列的通項公式;(2)由,結(jié)合乘公比錯位相減求和,即可求解.小問1詳解】解:設(shè)正項的等比數(shù)列的公比為,顯然不為1,因為等比數(shù)列前4項和為且,可得,解得,所以數(shù)列的通項公式為.【小問2詳解】解:由,所以,可得,兩式相減得,所以.22、(1)證明過程見解析;(2).【解析】(1)根

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論