版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
山東省沂水縣2026屆高二上數(shù)學(xué)期末綜合測(cè)試模擬試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)、考場(chǎng)號(hào)和座位號(hào)填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對(duì)應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動(dòng),用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動(dòng),先劃掉原來(lái)的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無(wú)效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.阿基米德是古希臘著名的數(shù)學(xué)家、物理學(xué)家,他利用“逼近法”得到橢圓的面積除以圓周率等于橢圓的長(zhǎng)半軸長(zhǎng)與短半軸長(zhǎng)的乘積,已知在平面直角坐標(biāo)系中,橢圓的面積為,兩焦點(diǎn)與短軸的一個(gè)端點(diǎn)構(gòu)成等邊三角形,則橢圓的標(biāo)準(zhǔn)方程是()A. B.C. D.2.命題“?x∈R,|x|+x2≥0”的否定是()A.?x∈R,|x|+x2<0 B.?x∈R,|x|+x2≤0C.?x0∈R,|x0|+<0 D.?x0∈R,|x0|+≥03.對(duì)于公差為1的等差數(shù)列,;公比為2的等比數(shù)列,,則下列說(shuō)法不正確的是()A.B.C.數(shù)列為等差數(shù)列D.數(shù)列的前項(xiàng)和為4.若圓的半徑為,則實(shí)數(shù)()A. B.-1C.1 D.5.已知雙曲線:與橢圓:有相同的焦點(diǎn),且一條漸近線方程為:,則雙曲線的方程為()A. B.C. D.6.若等差數(shù)列的前項(xiàng)和為,首項(xiàng),,,則滿足成立的最大正整數(shù)是()A. B.C. D.7.直線的傾斜角為()A.1 B.-1C. D.8.甲、乙同時(shí)參加某次數(shù)學(xué)檢測(cè),成績(jī)?yōu)閮?yōu)秀的概率分別為、,兩人的檢測(cè)成績(jī)互不影響,則兩人的檢測(cè)成績(jī)都為優(yōu)秀的概率為()A. B.C. D.9.某一電子集成塊有三個(gè)元件a,b,c并聯(lián)構(gòu)成,三個(gè)元件是否有故障相互獨(dú)立.已知至少1個(gè)元件正常工作,該集成塊就能正常運(yùn)行.若每個(gè)元件能正常工作的概率均為,則在該集成塊能夠正常工作的情況下,有且僅有一個(gè)元件出現(xiàn)故障的概率為()A. B.C. D.10.設(shè),,,…,,,則()A. B.C. D.11.設(shè)函數(shù),若為奇函數(shù),則曲線在點(diǎn)處的切線方程為()A. B.C. D.12.已知是空間的一個(gè)基底,若,,若,則()A. B.C.3 D.二、填空題:本題共4小題,每小題5分,共20分。13.若函數(shù)在[1,3]單調(diào)遞增,則a的取值范圍___14.曲線在點(diǎn)處的切線的方程為__________.15.已知函數(shù).(1)若的解集為,求a,b的值;(2)若,a,b均正實(shí)數(shù),求的最小值;(3)若,當(dāng)時(shí),若不等式恒成立,求實(shí)數(shù)b的值.16.若,,都為正實(shí)數(shù),,且,,成等比數(shù)列,則的最小值為______三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知橢圓C:,斜率為的直線l與橢圓C交于A、B兩點(diǎn)且(1)求橢圓C的離心率;(2)求直線l的方程18.(12分)如圖,在四棱錐中,已知平面ABCD,為等邊三角形,,,.(1)證明:平面PAD;(2)若M是BP的中點(diǎn),求二面角的余弦值.19.(12分)已知拋物線上一點(diǎn)到其焦點(diǎn)F的距離為2.(1)求拋物線方程;(2)直線與拋物線相交于兩點(diǎn),求的長(zhǎng).20.(12分)已知橢圓:()的左、右焦點(diǎn)分別為,焦距為,過(guò)點(diǎn)作直線交橢圓于兩點(diǎn),的周長(zhǎng)為.(1)求橢圓的方程;(2)若斜率為的直線與橢圓相交于兩點(diǎn),求定點(diǎn)與交點(diǎn)所構(gòu)成的三角形面積的最大值.21.(12分)某工廠有工人1000名,其中250名工人參加過(guò)短期培訓(xùn)(稱為A類工人),另外750名工人參加過(guò)長(zhǎng)期培訓(xùn)(稱為B類工人).現(xiàn)用分層抽樣方法(按A類,B類分二層)從該工廠的工人中共抽查100名工人,調(diào)查他們的生產(chǎn)能力(生產(chǎn)能力指一天加工的零件數(shù))(1)A類工人中和B類工人各抽查多少工人?(2)從A類工人中抽查結(jié)果和從B類工人中的抽查結(jié)果分別如下表1和表2:表1:生產(chǎn)能力分組人數(shù)48x53表2:生產(chǎn)能力分組人數(shù)6y3618①先確定x,y,再在答題紙上完成下列頻率分布直方圖.就生產(chǎn)能力而言,A類工人中個(gè)體間的差異程度與B類工人中個(gè)體間的差異程度哪個(gè)更小?(不用計(jì)算,可通過(guò)觀察直方圖直接回答結(jié)論)②分別估計(jì)A類工人和B類工人生產(chǎn)能力的平均數(shù),并估計(jì)該工廠工人和生產(chǎn)能力的平均數(shù)(同一組中的數(shù)據(jù)用該區(qū)間的中點(diǎn)值作代表)圖1A類工人生產(chǎn)能力的頻率分布直方圖圖2B類工人生產(chǎn)能力的頻率分布直方圖22.(10分)已知的頂點(diǎn),邊上的中線所在直線方程為,邊上的高所在直線方程為.求:(1)頂點(diǎn)的坐標(biāo);(2)直線的方程.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】由橢圓的面積為和兩焦點(diǎn)與短軸的一個(gè)端點(diǎn)構(gòu)成等邊三角形,得到求解.【詳解】由題意得,解得,所以橢圓的標(biāo)準(zhǔn)方程是.故選:A2、C【解析】利用全稱命題的否定可得出結(jié)論.【詳解】由全稱命題的否定可知,命題“,”的否定是“,”.故選:C.3、B【解析】由等差數(shù)列的通項(xiàng)公式判定選項(xiàng)A正確;利用等比數(shù)列的通項(xiàng)公式求出,即判定選項(xiàng)B錯(cuò)誤;利用對(duì)數(shù)的運(yùn)算和等差數(shù)列的定義判定選項(xiàng)C正確;利用錯(cuò)位相減法求和,即判定選項(xiàng)D正確.【詳解】對(duì)于A:由條件可得,,即選項(xiàng)A正確;對(duì)于B:由條件可得,,即選項(xiàng)B錯(cuò)誤;對(duì)于C:因?yàn)?,所以,則,即數(shù)列是首項(xiàng)和公差均為的等差數(shù)列,即選項(xiàng)C正確;對(duì)于D:,設(shè)數(shù)列的前項(xiàng)和為,則,,上面兩式相減可得,所以,即選項(xiàng)D正確.故選:B.4、B【解析】將圓的方程化為標(biāo)準(zhǔn)方程,即可求出半徑的表達(dá)式,從而可求出的值.【詳解】由題意,圓的方程可化為,所以半徑為,解得.故選:B.【點(diǎn)睛】本題考查圓的方程,考查學(xué)生的計(jì)算求解能力,屬于基礎(chǔ)題.5、B【解析】由漸近線方程,設(shè)出雙曲線方程,結(jié)合與橢圓有相同的焦點(diǎn),求出雙曲線方程.【詳解】∵雙曲線:的一條漸近線方程為:∴設(shè)雙曲線:∵雙曲線與橢圓有相同的焦點(diǎn)∴,解得:∴雙曲線的方程為.故選:B.6、B【解析】由等差數(shù)列的,及得數(shù)列是遞減的數(shù)列,因此可確定,然后利用等差數(shù)列的性質(zhì)求前項(xiàng)和,確定和的正負(fù)【詳解】∵,∴和異號(hào),又?jǐn)?shù)列是等差數(shù)列,首項(xiàng),∴是遞減的數(shù)列,,由,所以,,∴滿足的最大自然數(shù)為4040故選:B【點(diǎn)睛】關(guān)鍵點(diǎn)睛:本題求滿足的最大正整數(shù)的值,關(guān)鍵就是求出,時(shí)成立的的值,解題時(shí)應(yīng)充分利用等差數(shù)列下標(biāo)和的性質(zhì)求解,屬于中檔題.7、C【解析】根據(jù)直線斜率的定義即可求解.【詳解】,斜率為1,則傾斜角為.故選:C.8、D【解析】利用相互獨(dú)立事件概率乘法公式直接求解.【詳解】甲、乙同時(shí)參加某次數(shù)學(xué)檢測(cè),成績(jī)?yōu)閮?yōu)秀的概率分別為、,兩人的檢測(cè)成績(jī)互不影響,則兩人的檢測(cè)成績(jī)都為優(yōu)秀的概率為.故選:D9、A【解析】記事件為該集成塊能夠正常工作,事件為僅有一個(gè)元件出現(xiàn)故障,進(jìn)而結(jié)合對(duì)立事件的概率公式得,再根據(jù)條件概率公式求解即可.【詳解】解:記事件為該集成塊能夠正常工作,事件為僅有一個(gè)元件出現(xiàn)故障,則為該集成塊不能正常工作,所以,,所以故選:A10、B【解析】根據(jù)已知條件求得的規(guī)律,從而確定正確選項(xiàng).【詳解】,,,,,……,以此類推,,所以.故選:B11、C【解析】利用函數(shù)的奇偶性求出,求出函數(shù)的導(dǎo)數(shù),根據(jù)導(dǎo)數(shù)的幾何意義,利用點(diǎn)斜式即可求出結(jié)果【詳解】函數(shù)的定義域?yàn)?,若為奇函?shù),則則,即,所以,所以函數(shù),可得;所以曲線在點(diǎn)處的切線的斜率為,則曲線在點(diǎn)處的切線方程為,即故選:C12、C【解析】由,可得存在實(shí)數(shù),使,然后將代入化簡(jiǎn)可求得結(jié)果【詳解】,,因,所以存在實(shí)數(shù),使,所以,所以,所以,得,,所以,故選:C二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由在區(qū)間上恒成立來(lái)求得的取值范圍.【詳解】依題意在區(qū)間上恒成立,在上恒成立,所以.故答案為:14、【解析】求出導(dǎo)函數(shù),得切線斜率后可得切線方程【詳解】,∴切線斜率為,切線方程為故答案為:15、(1),;(2);(3)【解析】(1)根據(jù)韋達(dá)定理解求得答案;(2)根據(jù)題意,,進(jìn)而化簡(jiǎn),然后結(jié)合基本不等式解得答案;(3)討論,和x=2三種情況,進(jìn)而分參轉(zhuǎn)化為求函數(shù)的最值問題,最后求得答案.【小問1詳解】由已知可知方程的兩個(gè)根為,2,由韋達(dá)定理得,,故,.【小問2詳解】由題意得,,所以,當(dāng)且僅當(dāng)時(shí)取等號(hào).【小問3詳解】若,,不等式恒成立.當(dāng)時(shí),,此時(shí),即對(duì)于恒成立,單調(diào)遞減,此時(shí),,所以;當(dāng)時(shí),,此時(shí),即即對(duì)于恒成立,在單調(diào)遞減,此時(shí),所以;當(dāng)x=2時(shí),.綜上所述:.16、##【解析】利用等比中項(xiàng)及條件可得,進(jìn)而可得,再利用基本不等式即得.【詳解】∵,,都為正實(shí)數(shù),,,成等比數(shù)列,∴,又,∴,即,∴,∴,當(dāng)且僅當(dāng),即取等號(hào).故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)(2)或【解析】(1)將橢圓化為標(biāo)準(zhǔn)方程,求得,進(jìn)而求得離心率;(2)設(shè)直線,,,與橢圓聯(lián)立,借助韋達(dá)定理及弦長(zhǎng)公式求得,從而求得直線方程.【小問1詳解】由題知,橢圓C:,則,離心率【小問2詳解】設(shè)直線,,聯(lián)立,化簡(jiǎn)得,則,解得,,由弦長(zhǎng)公式知,,解得,故直線或18、(1)證明見解析(2)【解析】(1)根據(jù)條件先證明,再根據(jù)線面平行的判定定理證明平面PAD;(2)確定坐標(biāo)原點(diǎn),建立空間直角坐標(biāo)系,從而求出相關(guān)的點(diǎn)的坐標(biāo),進(jìn)而求得相關(guān)向量的坐標(biāo),再求相關(guān)平面的法向量,根據(jù)向量的夾角公式求得結(jié)果.【小問1詳解】證明:由已知為等邊三角形,且,所以又因?yàn)椋?在中,,又,所以在底面中,,又平面,平面,所以平面.【小問2詳解】解:取的中點(diǎn),連接,則,由(1)知,所以,分別以,,為,,軸建立空間直角坐標(biāo)系.則,,,所以,由已知可知平面ABCD的一個(gè)法向量設(shè)平面的一個(gè)法向量為,由,即,得,令,則,所以,由圖形可得二面角為銳角,所以二面角的余弦值為.19、(1)(2)【解析】(1)根據(jù)拋物線焦半徑公式即可得解;(2)聯(lián)立方程組求出交點(diǎn)坐標(biāo),即可得到弦長(zhǎng).【小問1詳解】由題:拋物線上一點(diǎn)到其焦點(diǎn)F的距離為2,即,所以拋物線方程:【小問2詳解】聯(lián)立直線和得,解得,,20、(1)(2)【解析】(1)根據(jù)題意可得,,再由,即可求解.(2)設(shè)直線的方程為,將直線與橢圓方程聯(lián)立求得關(guān)于的方程,利用弦長(zhǎng)公式求出,再利用點(diǎn)到直線的距離求出點(diǎn)到直線的距離,利用三角形的面積公式配方即可求解.【詳解】解(1)由題意得:,,∴,∴∴橢圓的方程為(2)∵直線的斜率為,∴可設(shè)直線的方程為與橢圓的方程聯(lián)立可得:①設(shè)兩點(diǎn)的坐標(biāo)為,由韋達(dá)定理得:,∴點(diǎn)到直線的距離,∴由①知:,,令,則,∴令,則在上的最大值為∴的最大值為綜上所述:三角形面積的最大值2.【點(diǎn)睛】本題考查了根據(jù)求橢圓的標(biāo)準(zhǔn)方程,考查了直線與橢圓額位置關(guān)系中三角形面積問題,考查了學(xué)生的計(jì)算能力,屬于中檔題.21、(1)25,75(2)①5,15,直方圖見解析,B類②123,133.8,131.1【解析】(1)先計(jì)算抽樣比為,進(jìn)而可得各層抽取人數(shù)(2)①類、類工人人數(shù)之比為,按此比例確定兩類工人需抽取的人數(shù),再算出和即可.畫出頻率分布直方圖,從直方圖可以判斷:類工人中個(gè)體間的差異程度更?、谌∶總€(gè)小矩形的橫坐標(biāo)的中點(diǎn)乘以對(duì)應(yīng)矩形的面積相加即得平均數(shù).【詳解】(1)由已知可得:抽樣比,故類工人中應(yīng)抽?。喝?,類工人中應(yīng)抽?。喝耍?)①由題意知,得,,得滿足條件的頻率分布直方圖如下所示:從直方圖可以判斷:類工人中個(gè)體間的差異程度更?、?,類工人生產(chǎn)能力的平均數(shù),類工人生產(chǎn)能力的平均數(shù)以及全工廠工人生產(chǎn)能力的平均數(shù)的估計(jì)值分別為123,133.8和131.1【點(diǎn)睛】本題考查等可能事件、相互獨(dú)立事
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 燈用化學(xué)配料工崗后測(cè)試考核試卷含答案
- 創(chuàng)業(yè)指導(dǎo)師崗前品質(zhì)考核試卷含答案
- 重冶萃取工安全實(shí)操水平考核試卷含答案
- 鋼筋骨架工崗前理論知識(shí)考核試卷含答案
- 熱工試驗(yàn)工安全實(shí)操評(píng)優(yōu)考核試卷含答案
- 2024年溫州商學(xué)院馬克思主義基本原理概論期末考試題附答案
- 2024年湖北三峽職業(yè)技術(shù)學(xué)院馬克思主義基本原理概論期末考試題附答案
- 2024年湖北師范大學(xué)輔導(dǎo)員招聘?jìng)淇碱}庫(kù)附答案
- 2025年企業(yè)品牌管理與市場(chǎng)定位手冊(cè)
- 2024年荔浦縣輔警招聘考試備考題庫(kù)附答案
- 鍋爐操作人員培訓(xùn)
- 零工市場(chǎng)(驛站)運(yùn)營(yíng)管理 投標(biāo)方案(技術(shù)方案)
- 幼兒學(xué)前班數(shù)學(xué)寒假作業(yè)25
- 保障性住房智能管理系統(tǒng)解決方案
- 幼小銜接數(shù)學(xué)計(jì)算每日一練39天(幼兒園大班)
- 高中物理會(huì)考知識(shí)點(diǎn)及高中物理會(huì)考知識(shí)點(diǎn)總結(jié)
- 福特F-150猛禽說(shuō)明書
- 上海布邦流體過(guò)濾產(chǎn)品知識(shí)課件
- 舒城縣2023-2024學(xué)年四年級(jí)數(shù)學(xué)第一學(xué)期期末達(dá)標(biāo)檢測(cè)模擬試題含答案
- 《干部履歷表》1999版電子版
-
評(píng)論
0/150
提交評(píng)論