版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
浙江省鎮(zhèn)海市鎮(zhèn)海中學2026屆高二數(shù)學第一學期期末調(diào)研模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若連續(xù)拋擲兩次骰子得到的點數(shù)分別為m,n,則點P(m,n)在直線x+y=4上的概率是()A. B.C. D.2.直線的一個法向量為()A. B.C. D.3.已知橢圓C:()的長軸的長為4,焦距為2,則C的方程為()A B.C. D.4.已知函數(shù)在上單調(diào)遞增,則實數(shù)a的取值范圍為()A. B.C. D.5.數(shù)學家歐拉在1765年提出定理:三角形的外心、重心、垂心位于同一直線上,且重心到外心的距離是重心到垂心距離的一半,這條直線被后人稱為三角形的歐拉線已知的頂點,則的歐拉線方程為()A. B.C. D.6.下列函數(shù)求導運算正確的個數(shù)為()①;②;③;④.A.1 B.2C.3 D.47.在中,角A,B,C所對的邊分別為a,b,c,若,,的面積為10,則的值為()A. B.C. D.8.已知動點的坐標滿足方程,則的軌跡方程是()A. B.C. D.9.已知點A、是拋物線:上的兩點,且線段過拋物線的焦點,若的中點到軸的距離為3,則()A.3 B.4C.6 D.810.經(jīng)過點作圓的弦,使點為弦的中點,則弦所在直線的方程為A. B.C. D.11.已知點P(5,3,6),直線l過點A(2,3,1),且一個方向向量為,則點P到直線l的距離為()A. B.C. D.12.如圖所示,已知是橢圓的左、右焦點,為橢圓的上頂點,在軸上,,且是的中點,為坐標原點,若點到直線的距離為3,則橢圓的方程為()A B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知拋物線:()的焦點到準線的距離為4,過點的直線與拋物線交于,兩點,若,則______14.已知橢圓的兩個焦點分別為,,,點在橢圓上,若,且的面積為4,則橢圓的標準方程為______15.已知F1,F(xiàn)2是雙曲線C:﹣y2=1(a>0)的左、右焦點,點P是雙曲線C上的任意一點(不是頂點),過F1作∠F1PF2的角平分線的垂線,垂足為H,O是坐標原點.若|F1F2|=6|OH|,則雙曲線C的方程為____16.的展開式中所有項的系數(shù)和為_________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知等差數(shù)列中,首項,公差,且數(shù)列的前項和為(1)求和;(2)設,求數(shù)列的前項和18.(12分)已知正項等比數(shù)列的前項和為,滿足,.記.(1)求數(shù)列的通項公式;(2)設數(shù)列前項和,求使得不等式成立的的最小值.19.(12分)在平面直角坐標系中,已知點.點M滿足.記M的軌跡為C.(1)求C的方程;(2)直線l經(jīng)過點,與軌跡C分別交于點M、N,與直線交于點Q,求證:.20.(12分)已知(1)若函數(shù)在上有極值,求實數(shù)a的取值范圍;(2)已知方程有兩個不等實根,證明:(注:是自然對數(shù)的底數(shù))21.(12分)已知橢圓的中心在原點,焦點在軸上,離心率等于,它的一個頂點恰好是拋物線的焦點.(1)求橢圓的標準方程;(2)已知直線與橢圓交于、兩點,、是橢圓上位于直線兩側(cè)的動點,且直線的斜率為,求四邊形面積的最大值.22.(10分)如圖,在正三棱柱中,,,,分別為,,的中點(1)證明:(2)求平面與平面所成銳二面角的余弦值
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】利用分布計數(shù)原理求出所有的基本事件個數(shù),在求出點落在直線x+y=4上包含的基本事件個數(shù),利用古典概型的概率個數(shù)求出.解:連續(xù)拋擲兩次骰子出現(xiàn)的結(jié)果共有6×6=36,其中每個結(jié)果出現(xiàn)的機會都是等可能的,點P(m,n)在直線x+y=4上包含的結(jié)果有(1,3),(2,2),(3,1)共三個,所以點P(m,n)在直線x+y=4上的概率是3:36=1:12,故選D考點:古典概型點評:本題考查先判斷出各個結(jié)果是等可能事件,再利用古典概型的概率公式求概率,屬于基礎題2、B【解析】直線化為,求出直線的方向向量,因為法向量與方向向量垂直,逐項驗證可得答案.【詳解】直線的方向向量為,化為,直線的方向向量為,因為法向量與方向向量垂直,設法向量為,所以,由于,A錯誤;,故B正確;,故C錯誤;,故D錯誤;故選:B.3、D【解析】由題設可得求出橢圓參數(shù),即可得方程.【詳解】由題設,知:,可得,則,∴C的方程為.故選:D.4、D【解析】根據(jù)題意參變分離得到,求出的最小值,進而求出實數(shù)a的取值范圍.【詳解】由題意得:在上恒成立,即,其中在處取得最小值,,所以,解得:,故選:D5、D【解析】根據(jù)題意得出的歐拉線即為線段的垂直平分線,然后求出線段的垂直平分線的方程即可.【詳解】因為,所以線段的中點的坐標,線段所在直線的斜率,則線段的垂直平分線的方程為,即,因為,所以的外心、重心、垂心都在線段的垂直平分線上,所以的歐拉線方程為.故選:D【點睛】本題主要考走查直線的方程,解題的關鍵是準確找出歐拉線,屬于中檔題.6、A【解析】根據(jù)導數(shù)的運算法則和導數(shù)的基本公式計算后即可判斷【詳解】解:①,故錯誤;②,故正確;③,故錯誤;④,故錯誤.所以求導運算正確的個數(shù)為1.故選:A.7、A【解析】由同角公式求出,根據(jù)三角形面積公式求出,根據(jù)余弦定理求出,根據(jù)正弦定理求出.【詳解】因為,所以,因為,的面積為10,所以,故,從而,解得,由正弦定理得:.故選:A.【點睛】本題考查了同角公式,考查了三角形的面積公式,考查了余弦定理,考查了正弦定理,屬于基礎題.8、C【解析】此方程表示點到點的距離與到點的距離之差為8,而這正好符合雙曲線的定義,點的軌跡是雙曲線的右支,,的軌跡方程是,故選C.9、D【解析】直接根據(jù)拋物線焦點弦長公式以及中點坐標公式求結(jié)果【詳解】設,,則的中點到軸的距離為,則故選:D10、A【解析】由題知為弦AB的中點,可得直線與過圓心和點的直線垂直,可求的斜率,然后用點斜式求出的方程【詳解】由題意知圓的圓心為,,由,得,∴弦所在直線的方程為,整理得.選A.【點睛】本題考查直線與圓的位置關系,直線的斜率,直線的點斜式方程,屬于基礎題11、B【解析】根據(jù)向量和直線l的方向向量的關系即可求出點P到直線l的距離.【詳解】由題意,,,,,,到直線的距離為.故選:B.12、D【解析】由題設可得,直線的方程為,點線距離公式表示到直線的距離,又聯(lián)立解得即可得出答案.【詳解】且,則△是等邊三角形,設,則①,∴直線方程為,即,∴到直線的距離為②,又③,聯(lián)立①②③,解得,,故橢圓方程為.故選:D.二、填空題:本題共4小題,每小題5分,共20分。13、15【解析】易得拋物線方程為,根據(jù),求得點P的坐標,進而得到直線l的方程,與拋物線方程聯(lián)立,再利用拋物線定義求解.【詳解】解:因為拋物線的焦點到準線的距離為4,所以,則拋物線:,設點的坐標為,的坐標為,因為,所以,則,則,所以直線的方程為,代入拋物線方程可得,故,則,所以故答案為:1514、【解析】由題意得到為直角三角形.設,,根據(jù)橢圓的離心率,定義,直角三角形的面積公式,勾股定理建立方程的方程組,消元后可求得的值.【詳解】由題可知,∴,又,代入上式整理得,由得為直角三角形又的面積為4,設,,則解得所以橢圓的標準方程為15、8x2﹣y2=1【解析】延長F1H與PF2,交于K,連接OH,由三角形的中位線定理和雙曲線的定義、垂直平分線的性質(zhì),結(jié)合雙曲線的a,b,c的關系,可得雙曲線方程【詳解】解:延長F1H與PF2,交于K,連接OH,由題意可得PH為邊KF1的垂直平分線,則|PF1|=|PK|,且H為KF1的中點,|OH|=|KF2|,由雙曲線的定義可得|PF1|﹣|PF2|=|PK|﹣|PF2|=|F2K|=2a,則|OH|=a,又|F1F2|=6|OH|,所以2c=6a,即c=3a,b==2a,又雙曲線C:﹣y2=1,知b=1,所以a=,所以雙曲線的方程為8x2﹣y2=1故答案為:8x2﹣y2=116、##0.015625【解析】賦值法求解二項式展開式中所有項的系數(shù)和.【詳解】令得:,即為展開式中所有項的系數(shù)和.故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1),;(2).【解析】(1)根據(jù)題意,結(jié)合等差數(shù)列的通項公式與求和公式,即可求解;(2)根據(jù)題意,求出,結(jié)合等差數(shù)列求和公式,即可求解.【小問1詳解】根據(jù)題意,易知;.【小問2詳解】根據(jù)題意,易知,因為,所以數(shù)列是首項為2,公差為的等差數(shù)列,故18、(1),.(2)5.【解析】(1)根據(jù)數(shù)列的遞推公式探求出其項間關系,由此求出的公比,進而求得,的通項公式.(2)利用(1)的結(jié)論結(jié)合錯位相減法求出,再將不等式變形,經(jīng)推理計算得解.【小問1詳解】解:設正項等比數(shù)列的公比為,當時,,即,則有,即,而,解得,又,則,所以,所以數(shù)列,的通項公式分別為:,.【小問2詳解】解:由(1)知,,則,則,兩式相減得:于是得,由得:,即,令,,顯然,,,,,,由,解得,即數(shù)列在時是遞增的,于是得當時,即,,則,所以不等式成立的n的最小值是5.19、(1)(2)證明見解析【解析】(1)根據(jù)已知得點M的軌跡C為橢圓,根據(jù)橢圓定義可得方程;(2)直線的方程設為,與橢圓方程聯(lián)立,利用韋達定理及線段長公式進行計算即可.【小問1詳解】由橢圓定義得,點M的軌跡C為以點為焦點,長軸長為4的橢圓,設此橢圓的標準方程為,則由題意得,所以C方程為;【小問2詳解】設點的坐標分別為,由題意知直線的斜率一定存在,設為,則直線的方程可設為,與橢圓方程聯(lián)立可得,由韋達定理知,所以,,又因為,所以又由題知,所以,所以,所以,得證.20、(1)(2)證明見解析.【解析】(1)利用導數(shù)判斷出在上單增,在上單減,在處取得唯一的極值,列不等式組,即可求出實數(shù)a的取值范圍;(2)記函數(shù),把證明,轉(zhuǎn)化為只需證明,用分析法證明即可.【小問1詳解】,定義域為,.令,解得:;令,解得:所以在上單增,在上單減,在處取得唯一的極值.要使函數(shù)在上有極值,只需,解得:,即實數(shù)a的取值范圍為.【小問2詳解】記函數(shù).則函數(shù)有兩個不等實根.因為,,兩式相減得,,兩式相加得,.因為,所以要證,只需證明,只需證明,只需證明,.證.設,只需證明.記,則,所以在上2單增,所以,所以,即,所以.即證.【點睛】導數(shù)是研究函數(shù)的單調(diào)性、極值(最值)最有效的工具,而函數(shù)是高中數(shù)學中重要的知識點,對導數(shù)的應用的考查主要從以下幾個角度進行:(1)考查導數(shù)的幾何意義,往往與解析幾何、微積分相聯(lián)系;(2)利用導數(shù)求函數(shù)的單調(diào)區(qū)間,判斷單調(diào)性;已知單調(diào)性,求參數(shù);(3)利用導數(shù)求函數(shù)的最值(極值),解決生活中的優(yōu)化問題;(4)利用導數(shù)證明不等式21、(1)(2)【解析】(1)根據(jù)離心率的定義以及橢圓與拋物線焦點的關系,可以求出橢圓方程;(2)根據(jù)題意,可以利用鉛錘底水平高的方法求四邊形APBQ的面積,即是要利用韋達定理算出.【小問1詳解】由題意,即;拋物線,焦點為,故,所以橢圓C的標準方程為:.【小問2詳解】由題意作圖如下:設AB直線的方程為:,并設點,,聯(lián)立方程:得:,∴……①,……②,;由于A,B兩點在直線PQ的兩邊(如上圖),所以,即,將①②帶入得:,解得;即由題意直線PQ的方程為,聯(lián)立方程解得,,∴;將線段PQ看做鉛錘底,A,B兩點的橫坐標之差看做水平高,得四邊形APBQ的面積為:,當且僅當m=0時取最大值,而,所以的最大值為.22、(1)證明見解析(2)【解析
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年商業(yè)街店鋪買賣合同
- 2026年污水處理排放監(jiān)管合同
- 車輛保險合同2026年保險金額協(xié)議
- 土地買賣合同協(xié)議2026年土地使用權(quán)
- 2026年藥品銷售代理合同模板版
- 2026年數(shù)據(jù)中心冷通道改造合同范本
- 2026年家庭智能監(jiān)控設備養(yǎng)護合同
- 土地流轉(zhuǎn)承包合同2026年協(xié)議范本
- 2026年借款合同補充協(xié)議
- 2026年漁具采購供應合同范本
- DB42T 831-2012 鉆孔灌注樁施工技術規(guī)程
- 新生兒循環(huán)系統(tǒng)疾病護理
- DBJ04-T489-2025 《智慧園林建設標準》
- 2025-2030中國石膏墻板行業(yè)市場發(fā)展趨勢與前景展望戰(zhàn)略研究報告
- 2024年度企業(yè)所得稅匯算清繳最 新稅收政策解析及操作規(guī)范專題培訓(洛陽稅務局)
- 實驗室檢測質(zhì)量控制與管理流程
- 2024年征兵心理測試題目
- 福建省三明市2024-2025學年七年級上學期期末語文試題
- 輸電線路安全課件
- 病區(qū)8S管理成果匯報
- 河南省鄭州市中原區(qū)2024-2025學年七年級上學期期末考試語文試題
評論
0/150
提交評論