吉林省蛟河市朝鮮族中學校2026屆高二數(shù)學第一學期期末綜合測試試題含解析_第1頁
吉林省蛟河市朝鮮族中學校2026屆高二數(shù)學第一學期期末綜合測試試題含解析_第2頁
吉林省蛟河市朝鮮族中學校2026屆高二數(shù)學第一學期期末綜合測試試題含解析_第3頁
吉林省蛟河市朝鮮族中學校2026屆高二數(shù)學第一學期期末綜合測試試題含解析_第4頁
吉林省蛟河市朝鮮族中學校2026屆高二數(shù)學第一學期期末綜合測試試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

吉林省蛟河市朝鮮族中學校2026屆高二數(shù)學第一學期期末綜合測試試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知數(shù)列是等比數(shù)列,,是函數(shù)的兩個不同零點,則等于()A. B.C.14 D.162.已知動圓M與直線y=2相切,且與定圓C:外切,求動圓圓心M的軌跡方程A. B.C. D.3.若動點滿足方程,則動點P的軌跡方程為()A. B.C. D.4.音樂與數(shù)學有著密切的聯(lián)系,我國春秋時期有個著名的“三分損益法”:以“宮”為基本音,“宮”經(jīng)過一次“損”,頻率變?yōu)樵瓉淼模玫健拔ⅰ?,“微”?jīng)過一次“益”,頻率變?yōu)樵瓉淼?,得到“商”……依此?guī)律損益交替變化,獲得了“宮”“微”“商”“羽”“角”五個音階.據(jù)此可推得()A.“商”“羽”“角”的頻率成公比為的等比數(shù)列B.“宮”“微”“商”的頻率成公比為的等比數(shù)列C.“宮”“商”“角”的頻率成公比為的等比數(shù)列D.“角”“商”“宮”的頻率成公比為的等比數(shù)列5.若圓與圓外切,則()A. B.C. D.6.若隨機事件滿足,,,則事件與的關(guān)系是()A.互斥 B.相互獨立C.互為對立 D.互斥且獨立7.現(xiàn)有甲、乙、丙、丁、戊五位同學,分別帶著A、B、C、D、E五個不同的禮物參加“抽盲盒”學游戲,先將五個禮物分別放入五個相同的盒子里,每位同學再分別隨機抽取一個盒子,恰有一位同學拿到自己禮物的概率為()A. B.C. D.8.函數(shù)的最大值為()A.32 B.27C.16 D.409.函數(shù)圖象如圖所示,則的解析式可以為A. B.C. D.10.拋物線的準線方程是()A. B.C. D.11.如圖甲是第七屆國際數(shù)學家大會(簡稱ICME—7)的會徽圖案,其主體圖案是由圖乙的一連串直角三角形演化而成的.已知,,,,為直角頂點,設這些直角三角形的周長從小到大組成的數(shù)列為,令,為數(shù)列的前項和,則()A.8 B.9C.10 D.1112.已知函數(shù)在處取得極值,則()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知過橢圓上的動點作圓(為圓心):的兩條切線,切點分別為,若的最小值為,則橢圓的離心率為______14.已知函數(shù),則曲線在處的切線方程為___________.15.若圓柱的高、底面半徑均為1,則其表面積為___________16.等軸(實軸長與虛軸長相等)雙曲線的離心率_______三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在三棱柱中,側(cè)棱垂直于底面,分別是的中點(1)求證:平面平面;(2)求證:平面;(3)求三棱錐體積18.(12分)已知等差數(shù)列的前和為,數(shù)列是公比為2的等比數(shù)列,且,(1)求數(shù)列和數(shù)列的通項公式;(2)現(xiàn)由數(shù)列與按照下列方式構(gòu)造成新的數(shù)列①將數(shù)列中的項去掉數(shù)列中的項,按原來的順序構(gòu)成新數(shù)列;②數(shù)列與中的所有項分別構(gòu)成集合與,將集合中的所有元素從小到大依次排列構(gòu)成一個新數(shù)列;在以上兩個條件中任選一個做為已知條件,求數(shù)列的前30項和.19.(12分)如圖,三棱錐中,為等邊三角形,且面面,(1)求證:;(2)當與平面BCD所成角為45°時,求二面角的余弦值20.(12分)在棱長為4的正方體中,點分別在線段上,點在線段延長線上,,,連接交線段于點.(1)求證平面;(2)求異面直線所成角的余弦值.21.(12分)(1)證明:;(2)已知:,,且,求證:.22.(10分)已知函數(shù)(a是常數(shù)).(1)當時,求的單調(diào)區(qū)間與極值;(2)若,求a的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】根據(jù)等比數(shù)列的性質(zhì)求得正確答案.【詳解】是函數(shù)的兩個不同零點,所以,由于數(shù)列是等比數(shù)列,所以.故選:C2、D【解析】由題意動圓M與直線y=2相切,且與定圓C:外切∴動點M到C(0,-3)的距離與到直線y=3的距離相等由拋物線的定義知,點M的軌跡是以C(0,-3)為焦點,直線y=3為準線的拋物線故所求M的軌跡方程為考點:軌跡方程3、A【解析】根據(jù)方程可以利用幾何意義得到動點P的軌跡方程是以與為焦點的橢圓方程,從而求出軌跡方程.【詳解】由題意得:到與的距離之和為8,且8>4,故動點P的軌跡方程是以與為焦點的橢圓方程,故,,所以,,所以橢圓方程為.故選:A4、C【解析】根據(jù)文化知識,分別求出相對應的頻率,即可判斷出結(jié)果【詳解】設“宮”的頻率為a,由題意經(jīng)過一次“損”,可得“徵”的頻率為a,“徵”經(jīng)過一次“益”,可得“商”的頻率為a,“商”經(jīng)過一次“損”,可得“羽”頻率為a,最后“羽”經(jīng)過一次“益”,可得“角”的頻率是a,由于a,a,a成等比數(shù)列,所以“宮、商、角”的頻率成等比數(shù)列,且公比為,故選:C【點睛】本題考查等比數(shù)列的定義,考查學生的運算能力和轉(zhuǎn)換能力及思維能力,屬于基礎(chǔ)題5、C【解析】求得兩圓的圓心坐標和半徑,結(jié)合兩圓相外切,列出方程,即可求解.【詳解】由題意,圓與圓可得,,因為兩圓相外切,可得,解得故選:C.6、B【解析】利用獨立事件,互斥事件和對立事件的定義判斷即可【詳解】解:因為,,又因為,所以有,所以事件與相互獨立,不互斥也不對立故選:B.7、D【解析】利用排列組合知識求出每位同學再分別隨機抽取一個盒子,恰有一位同學拿到自己禮物的情況個數(shù),以及五人抽取五個禮物的總情況,兩者相除即可.【詳解】先從五人中抽取一人,恰好拿到自己禮物,有種情況,接下來的四人分為兩種情況,一種是兩兩一對,兩個人都拿到對方的禮物,有種情況,另一種是四個人都拿到另外一個人的禮物,不是兩兩一對,都拿到對方的情況,由種情況,綜上:共有種情況,而五人抽五個禮物總數(shù)為種情況,故恰有一位同學拿到自己禮物的概率為.故選:D8、A【解析】利用導數(shù)即可求解.【詳解】因為,所以當時,;當時,.所以函數(shù)在上單調(diào)遞增;在上單調(diào)遞增,,因此,的最大值為.故選:A9、A【解析】利用排除法:對于B,令得,,即有兩個零點,不符合題意;對于C,當時,,當且僅當時等號成立,即函數(shù)在區(qū)間上存在最大值,不符合題意;對于D,的定義域為,不符合題意;本題選擇A選項.點睛:函數(shù)圖象的識辨可從以下方面入手:(1)從函數(shù)的定義域,判斷圖象的左右位置;從函數(shù)的值域,判斷圖象的上下位置.(2)從函數(shù)的單調(diào)性,判斷圖象的變化趨勢.(3)從函數(shù)的奇偶性,判斷圖象的對稱性.(4)從函數(shù)的特征點,排除不合要求的圖象.利用上述方法排除、篩選選項10、D【解析】將拋物線的方程化為標準方程,可得出該拋物線的準線方程.【詳解】拋物線的標準方程為,則,可得,因此,該拋物線的準線方程為.故選:D.11、B【解析】由題意可得的邊長,進而可得周長及,進而可得,可得解.【詳解】由,可得,,,,所以,,所以前項和,所以,故選:B.12、B【解析】根據(jù)極值點處導函數(shù)為零可求解.【詳解】因為,則,由題意可知.經(jīng)檢驗滿足題意故選:B二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由橢圓方程和圓的方程可確定橢圓焦點、圓心和半徑;當最小時,可知,此時;根據(jù)橢圓性質(zhì)知,解方程可求得,進而得到離心率.【詳解】由橢圓方程知其右焦點為;由圓的方程知:圓心為,半徑為;當最小時,則最小,即,此時最小;此時,;為橢圓右頂點時,,解得:,橢圓的離心率.故答案為:.14、【解析】求出函數(shù)的導函數(shù),即可求出切線的斜率,再利用點斜式求出切線方程【詳解】解:∵,∴,又,∴曲線在點處的切線方程為,即.故答案為:.15、【解析】根據(jù)圓柱表面積公式求解即可.【詳解】根據(jù)題意得到圓柱的高,底面半徑,則表面積.故答案為:16、【解析】由題意可知,,由,化簡可求離心率.【詳解】由題意可知,,兩邊同時平方,得,即,,所以離心率,故答案為:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2)證明見解析;(3)【解析】(1)由直線與平面垂直證明直線與平行的垂直;(2)證明直線與平面平行;(3)求三棱錐的體積就用體積公式.(1)在三棱柱中,底面ABC,所以AB,又因為AB⊥BC,所以AB⊥平面,因為AB平面,所以平面平面.(2)取AB中點G,連結(jié)EG,F(xiàn)G,因為E,F(xiàn)分別是、的中點,所以FG∥AC,且FG=AC,因為AC∥,且AC=,所以FG∥,且FG=,所以四邊形為平行四邊形,所以EG,又因為EG平面ABE,平面ABE,所以平面.(3)因為=AC=2,BC=1,AB⊥BC,所以AB=,所以三棱錐的體積為:==.考點:本小題主要考查直線與直線、直線與平面、平面與平面的垂直與平行的證明;考查幾何體的體積的求解等基礎(chǔ)知識,考查同學們的空間想象能力、推理論證能力、運算求解能力、邏輯推理能力,考查數(shù)形結(jié)合思想、化歸與轉(zhuǎn)化思想18、(1),(2)答案見解析【解析】(1)由題意可直接得到等比數(shù)列的通項公式;求出等差數(shù)列的公差,即可得到其通項公式;(2)若選①,則可確定由數(shù)列前33項的和減去,即可得答案;若選②,則可確定由數(shù)列前27項的和加上,即可得答案.【小問1詳解】因為數(shù)列為等比數(shù)列,且,所以.又因,所以,又,則,故等差數(shù)列的通項公式為.【小問2詳解】因為,,所以,而若選①因為在數(shù)列前30項內(nèi),不在在數(shù)列前30項內(nèi).,則數(shù)列前30項和為:=1632.若選②因為在數(shù)列前30項內(nèi),不在在數(shù)列前30項內(nèi).,則數(shù)列前30項和為:=1203.19、(1)證明見解析;(2).【解析】(1)根據(jù)給定條件證得平面即可推理作答.(2)由與平面BCD所成角確定正邊長與CD長的關(guān)系,再作出二面角的平面角,借助余弦定理計算作答.【小問1詳解】在三棱錐中,平面平面,平面平面,而,平面,因此有平面,又有平面,所以.【小問2詳解】取BC中點F,連接AF,DF,如圖,因為等邊三角形,則,而平面平面,平面平面,平面,于是得平面,是與平面BCD所成角,即,令,則,因,即有,由(1)知,,則有,過C作交AD于O,在平面內(nèi)過O作交BD于E,連CE,從而得是二面角的平面角,中,,,中,由余弦定理得,,,顯然E是斜邊中點,則,中,由余弦定理得,所以二面角的余弦值.20、(1)證明見解析(2)【解析】(1)由線面平行的判定定理證明;(2)建立空間直角坐標系,用空間向量法求異面直線所成的角【小問1詳解】證明:且,由三角形相似可得,,,又,,又平面,平面平面;【小問2詳解】解:以為坐標原點,分別以為軸建立空間坐標系,如圖.則設異面直線所成角為,則21、(1)證明見解析;(2)證明見解析.【解析】(1)利用分析法證明即可;(2)將與相乘,展開后利用基本不等式可證明所證不等式成立.【詳解】(1

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論