版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2026屆珠海市重點(diǎn)中學(xué)高一上數(shù)學(xué)期末質(zhì)量跟蹤監(jiān)視試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.下列四個函數(shù),最小正周期是的是()A. B.C. D.2.已知是第二象限角,且,則點(diǎn)位于()A.第一象限 B.第二象限C.第三象限 D.第四象限3.冪函數(shù)的圖象過點(diǎn),則()A. B.C. D.4.將半徑都為1的4個鋼球完全裝入形狀為正四面體的容器里,這個正四面體的高的最小值為()A. B.C. D.5.已知A(3,1),B(-1,2),若∠ACB的平分線方程為y=x+1,則AC所在的直線方程為()A.y=2x+4 B.y=x-3C.x-2y-1=0 D.3x+y+1=06.已知直線的方程是,的方程是,則下列各圖形中,正確的是A. B.C. D.7.已知函數(shù),下列含有函數(shù)零點(diǎn)的區(qū)間是()A. B.C. D.8.函數(shù)圖像大致為()A. B.C. D.9.將函數(shù)的圖象沿軸向左平移個單位后,得到一個偶函數(shù)的圖象,則的一個可能取值為A. B.C. D.10.已知集合M={x|0≤x<2},N={x|x2-2x-3<0},則M∩N=()A.{x|0≤x<1} B.{x|0≤x<2}C.{x|0≤x≤1} D.{x|0≤x≤2}二、填空題:本大題共6小題,每小題5分,共30分。11.若,,則______12.若函數(shù)在上單調(diào)遞減,則實(shí)數(shù)a的取值范圍為___________.13.關(guān)于函數(shù)f(x)=有如下四個命題:①f(x)的圖象關(guān)于y軸對稱②f(x)的圖象關(guān)于原點(diǎn)對稱③f(x)的圖象關(guān)于直線x=對稱④f(x)的最小值為2其中所有真命題的序號是__________14.已知函數(shù),給出下列四個命題:①函數(shù)是周期函數(shù);②函數(shù)的圖象關(guān)于點(diǎn)成中心對稱;③函數(shù)的圖象關(guān)于直線成軸對稱;④函數(shù)在區(qū)間上單調(diào)遞增.其中,所有正確命題的序號是___________.15.經(jīng)過點(diǎn)且在軸和軸上的截距相等的直線的方程為__________16.設(shè)函數(shù),則____________三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)已知角的終邊過點(diǎn),且,求的值;(2)已知,,且,求.18.在初中階段函數(shù)學(xué)習(xí)中,我們經(jīng)歷了“確定函數(shù)的表達(dá)式—利用函數(shù)圖象研究其性質(zhì)”,函數(shù)圖象在探索函數(shù)的性質(zhì)中有非常重要的作用,下面我們對已知經(jīng)過點(diǎn)的函數(shù)的圖象和性質(zhì)展開研究.探究過程如下,請補(bǔ)全過程:x…0179…y…m0n…(1)①請根據(jù)解析式列表,則_________,___________;②在給出的平面直角坐標(biāo)系中描點(diǎn),并畫出函數(shù)圖象;(2)寫出這個函數(shù)的一條性質(zhì):__________;(3)已知函數(shù),請結(jié)合兩函數(shù)圖象,直接寫出不等式的解集:____________.19.我們知道,函數(shù)的圖象關(guān)于坐標(biāo)原點(diǎn)成中心對稱圖形的充要條件是函數(shù)為奇函數(shù),有同學(xué)發(fā)現(xiàn)可以將其推廣為:函數(shù)的圖象關(guān)于點(diǎn)成中心對稱圖形的充要條件是函數(shù)為奇函數(shù).若函數(shù)的圖象關(guān)于點(diǎn)對稱,且當(dāng)時,.(1)求的值;(2)設(shè)函數(shù).(i)證明函數(shù)的圖象關(guān)于點(diǎn)對稱;(ii)若對任意,總存在,使得成立,求的取值范圍.20.計(jì)算:(1)94(2)lg5+lg2?21.為適應(yīng)新冠肺炎疫情長期存在的新形勢,打好疫情防控的主動仗,某學(xué)校大力普及科學(xué)防疫知識,現(xiàn)需要在2名女生、3名男生中任選2人擔(dān)任防疫宣講主持人,每位同學(xué)當(dāng)選的機(jī)會是相同的.(1)寫出試驗(yàn)的樣本空間,并求當(dāng)選的2名同學(xué)中恰有1名女生的概率;(2)求當(dāng)選的2名同學(xué)中至少有1名男生的概率.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、C【解析】依次計(jì)算周期即可.【詳解】A選項(xiàng):,錯誤;B選項(xiàng):,錯誤;C選項(xiàng):,正確;D選項(xiàng):,錯誤.故選:C.2、B【解析】根據(jù)所在象限可判斷出,,從而可得答案.【詳解】為第二象限角,,,則點(diǎn)位于第二象限.故選:B.3、C【解析】將點(diǎn)代入中,求解的值可得,再求即可.【詳解】因?yàn)閮绾瘮?shù)的圖象過點(diǎn),所以有:,即.所以,故,故選:C.4、C【解析】由題意可得,底面放三個鋼球,上再落一個鋼球時體積最小,于是把鋼球的球心連接,則可得到一個棱長為2的小正四面體,該小正四面體的高為,且由正四面體的性質(zhì)可知,正四面體的中心到底面的距離是高的,且小正四面體的中心和正四面體容器的中心是重合的,所以小正四面體的中心到底面的距離是,正四面體的中心到底面的距離是,所以可知正四面體的高的最小值為,故選擇C考點(diǎn):幾何體的體積5、C【解析】設(shè)點(diǎn)A(3,1)關(guān)于直線的對稱點(diǎn)為,則,解得,即,所以直線的方程為,聯(lián)立解得,即,又,所以邊AC所在的直線方程為,選C.點(diǎn)睛:本題主要考查了直線方程的求法,屬于中檔題.解題時要結(jié)合實(shí)際情況,準(zhǔn)確地進(jìn)行求解6、D【解析】對于D:l1:y=ax+b,l2:y=bx-a.由l1可知a<0,b<0,對應(yīng)l2也符合,7、C【解析】利用零點(diǎn)存性定理即可求解.【詳解】解析:因?yàn)楹瘮?shù)單調(diào)遞增,且,,,,.且所以含有函數(shù)零點(diǎn)的區(qū)間為.故選:C8、B【解析】先求出函數(shù)的定義域,判斷出函數(shù)為奇函數(shù),排除選項(xiàng)D,由當(dāng)時,,排除A,C選項(xiàng),得出答案.【詳解】解析:定義域?yàn)椋?,所以為奇函?shù),可排除D選項(xiàng),當(dāng)時,,,由此,排除A,C選項(xiàng),故選:B9、B【解析】得到的偶函數(shù)解析式為,顯然【考點(diǎn)定位】本題考查三角函數(shù)的圖象和性質(zhì),要注意三角函數(shù)兩種變換的區(qū)別,選擇合適的值通過誘導(dǎo)公式把轉(zhuǎn)化為余弦函數(shù)是考查的最終目的.10、B【解析】先化簡集合N,再進(jìn)行交集運(yùn)算即得結(jié)果.【詳解】由于N={x|x2-2x-3<0}={x|-1<x<3},M={x|0≤x<2},所以M∩N={x|0≤x<2}故選:B.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】利用指數(shù)的運(yùn)算性質(zhì)可求得結(jié)果.【詳解】由指數(shù)的運(yùn)算性質(zhì)可得.故答案為:.12、【解析】利用復(fù)合函數(shù)的單調(diào)性,即可得到答案;【詳解】在定義域內(nèi)始終單調(diào)遞減,原函數(shù)要單調(diào)遞減時,,,,故答案為:13、②③【解析】利用特殊值法可判斷命題①的正誤;利用函數(shù)奇偶性的定義可判斷命題②的正誤;利用對稱性的定義可判斷命題③的正誤;取可判斷命題④的正誤.綜合可得出結(jié)論.【詳解】對于命題①,,,則,所以,函數(shù)的圖象不關(guān)于軸對稱,命題①錯誤;對于命題②,函數(shù)的定義域?yàn)椋x域關(guān)于原點(diǎn)對稱,,所以,函數(shù)的圖象關(guān)于原點(diǎn)對稱,命題②正確;對于命題③,,,則,所以,函數(shù)的圖象關(guān)于直線對稱,命題③正確;對于命題④,當(dāng)時,,則,命題④錯誤.故答案為:②③.【點(diǎn)睛】本題考查正弦型函數(shù)的奇偶性、對稱性以及最值的求解,考查推理能力與計(jì)算能力,屬于中等題.第ⅠⅠ卷14、①②③【解析】利用誘導(dǎo)公式化簡函數(shù),借助周期函數(shù)的定義判斷①;利用函數(shù)圖象對稱的意義判斷②③;取特值判斷④作答.【詳解】依題意,,因,是周期函數(shù),是它的一個周期,①正確;因,,即,因此的圖象關(guān)于點(diǎn)成對稱中心,②正確;因,,即,因此的圖象關(guān)于直線成軸對稱,③正確;因,,,顯然有,而,因此函數(shù)在區(qū)間上不單調(diào)遞增,④不正確,所以,所有正確命題的序號是①②③.故答案為:①②③【點(diǎn)睛】結(jié)論點(diǎn)睛:函數(shù)的定義域?yàn)镈,,(1)存在常數(shù)a,b使得,則函數(shù)圖象關(guān)于點(diǎn)對稱.(2)存在常數(shù)a使得,則函數(shù)圖象關(guān)于直線對稱.15、或【解析】根據(jù)題意將問題分直線過原點(diǎn)和不過原點(diǎn)兩種情況求解,然后結(jié)合待定系數(shù)法可得到所求的直線方程【詳解】(1)當(dāng)直線過原點(diǎn)時,可設(shè)直線方程為,∵點(diǎn)在直線上,∴,∴直線方程為,即(2)當(dāng)直線不過原點(diǎn)時,設(shè)直線方程,∵點(diǎn)在直線上,∴,∴,∴直線方程為,即綜上可得所求直線方程為或故答案為或【點(diǎn)睛】在求直線方程時,應(yīng)先選擇適當(dāng)形式的直線方程,并注意各種形式的方程所適用的條件,由于截距式不能表示與坐標(biāo)軸垂直或經(jīng)過原點(diǎn)的直線,故在解題時若采用截距式,應(yīng)注意分類討論,判斷截距是否為零,分為直線過原點(diǎn)和不過原點(diǎn)兩種情況求解.本題考查直線方程的求法和分類討論思想方法的運(yùn)用16、2【解析】利用分段函數(shù)由里及外逐步求解函數(shù)的值即可.【詳解】解:由已知,所以,故答案為:.【點(diǎn)睛】本題考查分段函數(shù)的應(yīng)用,函數(shù)值的求法,考查計(jì)算能力.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】(1)利用三角函數(shù)的定義求出,再根據(jù)三角函數(shù)的定義求出、即可得解;(2)根據(jù)同角三角函數(shù)的基本關(guān)系求出、,再根據(jù)兩角差的余弦公式求出,即可得解;【詳解】解:(1)因?yàn)榻堑慕K邊過點(diǎn),且,所以,解得,即,所以,所以,,所以;(2)因?yàn)?,,所以,又,,所以,所以所以,因?yàn)樗?8、(1)①,;②答案見解析(2)函數(shù)的最小值為(3)或【解析】(1)把、分別代入函數(shù)解析式即可把下表補(bǔ)充完整;描點(diǎn)、連線即可得到函數(shù)的圖象;(2)這個函數(shù)的最小值為;(3)畫出兩個函數(shù)的圖象,結(jié)合圖象即可求解結(jié)論【小問1詳解】解:①將和分別代入函數(shù)解析式可得:,;②根據(jù)表格描點(diǎn),連線,x013579y01可得這個函數(shù)的圖象所示:;【小問2詳解】解:由圖象可知:這個函數(shù)的最小值為,(答案不唯一);【小問3詳解】解:在同一直角坐標(biāo)系中作出和圖象如圖所示:當(dāng)時,令,解得,當(dāng)時,令,解得,所以兩個函數(shù)圖象相交于點(diǎn),所以當(dāng)時,自變量x的取值范圍為或,即不等式的解集為或.19、(1);(2)(i)證明見解析;(ii).【解析】(1)根據(jù)題意∵為奇函數(shù),∴,令x=1即可求出;(2)(i)驗(yàn)證為奇函數(shù)即可;(ii))求出在區(qū)間上的值域?yàn)锳,記在區(qū)間上的值域?yàn)?,則.由此問題轉(zhuǎn)化為討論f(x)的值域B,分,,三種情況討論即可.【小問1詳解】∵為奇函數(shù),∴,得,則令,得.【小問2詳解】(i),∵為奇函數(shù),∴為奇函數(shù),∴函數(shù)的圖象關(guān)于點(diǎn)對稱.(ii)在區(qū)間上單調(diào)遞增,∴在區(qū)間上的值域?yàn)?,記在區(qū)間上的值域?yàn)椋蓪?,總,使得成立知,①?dāng)時,上單調(diào)遞增,由對稱性知,在上單調(diào)遞增,∴在上單調(diào)遞增,只需即可,得,∴滿足題意;②當(dāng)時,在上單調(diào)遞減,在上單調(diào)遞增,由對稱性知,在上單調(diào)遞增,在上單調(diào)遞減,∴在上單調(diào)遞減,在上單調(diào)遞增,在上單調(diào)遞減,∴或,當(dāng)時,,,∴滿足題意;③當(dāng)時,在上單調(diào)遞減,由對稱性知,在上單調(diào)遞減,∴在上單調(diào)遞減,只需即可,得,∴滿足題意.綜上所述,的取值范圍為.20、(1)12【解析】(1)根據(jù)指數(shù)冪的運(yùn)算法則逐一進(jìn)行化簡;(2)根據(jù)對數(shù)冪的運(yùn)算法則進(jìn)行化簡;【詳解】解:(1)原式=3(2)原式=lg【點(diǎn)睛】指數(shù)冪運(yùn)算的一般原則(1)有括號的先算括號里的,無括號的先做指數(shù)運(yùn)算;(2)先乘除后加減,負(fù)指數(shù)冪化成正指數(shù)冪的倒數(shù);(3)底數(shù)是負(fù)數(shù),先確定符號;底數(shù)是小數(shù),先化成分?jǐn)?shù);底數(shù)是帶分?jǐn)?shù)的,先化成假分?jǐn)?shù);(4)若是根式,應(yīng)化為分?jǐn)?shù)指數(shù)冪,盡可能用冪形式表示,運(yùn)用指數(shù)冪的運(yùn)算性質(zhì)來解答.21、(1)樣本空間答案見解析,概率是(2)【解析】(1)將2名女生,3名男生分別用a,b;c,d,e表示,即可列出樣本空間,再根據(jù)古典概型的概率公式計(jì)算可得;(2)設(shè)事件“當(dāng)選的2名同學(xué)中至少有1名男生”,事件“當(dāng)選的2名同學(xué)中全部都是女
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026秋招:邁瑞生物醫(yī)療試題及答案
- 2026秋招:遼寧地質(zhì)勘探礦業(yè)集團(tuán)面試題及答案
- 2026秋招:立白凱晟控股公司試題及答案
- 2026秋招:科大訊飛面試題及答案
- 2026秋招:江蘇國金資本運(yùn)營集團(tuán)試題及答案
- 2026年大學(xué)(給排水科學(xué)與工程)實(shí)訓(xùn)測試試題及答案
- 人工智能倫理審查規(guī)則
- 人教新課標(biāo)二年級下冊語文教案雷雨1教學(xué)設(shè)計(jì)
- 2025年衛(wèi)生副高級職稱面審答辯(全科醫(yī)學(xué))綜合能力測試題及答案
- 做賬實(shí)操-綠色建筑公司會計(jì)賬務(wù)處理分錄
- 全麻剖宮產(chǎn)麻醉專家共識
- 產(chǎn)線協(xié)同管理制度
- 災(zāi)害應(yīng)急響應(yīng)路徑優(yōu)化-洞察及研究
- T/CAQI 96-2019產(chǎn)品質(zhì)量鑒定程序規(guī)范總則
- 2025既有建筑改造利用消防設(shè)計(jì)審查指南
- 化學(xué)-湖南省永州市2024-2025學(xué)年高二上學(xué)期1月期末試題和答案
- 廣東省廣州市海珠區(qū)2024-2025學(xué)年九年級上學(xué)期期末考試英語試題(含答案)
- 脊髓血管解剖及脊髓血管疾病基礎(chǔ)
- 2025年貴安發(fā)展集團(tuán)有限公司招聘筆試參考題庫含答案解析
- 語文-2025年1月廣西高三調(diào)研考全科試卷和答案(12地級市)
- GB/T 15972.40-2024光纖試驗(yàn)方法規(guī)范第40部分:傳輸特性的測量方法和試驗(yàn)程序衰減
評論
0/150
提交評論