2026屆浙江省衢州市五校聯(lián)盟高一上數(shù)學(xué)期末聯(lián)考試題含解析_第1頁
2026屆浙江省衢州市五校聯(lián)盟高一上數(shù)學(xué)期末聯(lián)考試題含解析_第2頁
2026屆浙江省衢州市五校聯(lián)盟高一上數(shù)學(xué)期末聯(lián)考試題含解析_第3頁
2026屆浙江省衢州市五校聯(lián)盟高一上數(shù)學(xué)期末聯(lián)考試題含解析_第4頁
2026屆浙江省衢州市五校聯(lián)盟高一上數(shù)學(xué)期末聯(lián)考試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2026屆浙江省衢州市五校聯(lián)盟高一上數(shù)學(xué)期末聯(lián)考試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.如圖,網(wǎng)格紙的各小格都是正方形(邊長為1),粗實線畫出的是一個凸多面體的三視圖(兩個矩形,一個直角三角形),則這個幾何體的表面積為()A. B.C. D.2.土地沙漠化的治理,對中國乃至世界來說都是一個難題,我國創(chuàng)造了治沙成功案例——毛烏素沙漠.某沙漠經(jīng)過一段時間的治理,已有1000公頃植被,假設(shè)每年植被面積以20%的增長率呈指數(shù)增長,按這種規(guī)律發(fā)展下去,則植被面積達到4000公頃至少需要經(jīng)過的年數(shù)為()(參考數(shù)據(jù):?。〢.6 B.7C.8 D.93.投壺是從先秦延續(xù)至清末的漢民族傳統(tǒng)禮儀和宴飲游戲,在春秋戰(zhàn)國時期較為盛行.如圖為一幅唐朝的投壺圖,假設(shè)甲、乙、丙是唐朝的三位投壺游戲參與者,且甲、乙、丙每次投壺時,投中與不投中是等可能的.若甲、乙、丙各投壺1次,則這3人中至多有1人投中的概率為()A. B.C. D.4.有一組實驗數(shù)據(jù)如下表所示:1.93.04.0516.11.54.07.512.018.0現(xiàn)準備用下列函數(shù)中的一個近似地表示這些數(shù)據(jù)滿足的規(guī)律,其中最接近的一個是()A. B.C. D.5.非零向量,,若點關(guān)于所在直線的對稱點為,則向量為A. B.C. D.6.設(shè)命題:,則的否定為()A. B.C. D.7.已知定義在上的函數(shù)滿足,則()A. B.C. D.8.已知,函數(shù)在上單調(diào)遞減,則的取值范圍是()A. B.C. D.9.已知,,則下列不等式中恒成立的是()A. B.C. D.10.,是兩個平面,,是兩條直線,則下列命題中錯誤的是()A.如果,,,那么B.如果,,那么C.如果,,,那么D.如果,,,那么二、填空題:本大題共6小題,每小題5分,共30分。11.已知向量的夾角為,,則__________.12.已知是定義在R上的偶函數(shù),且在上為增函數(shù),,則不等式的解集為___________.13.給定函數(shù)y=f(x),設(shè)集合A={x|y=f(x)},B={y|y=f(x)}.若對于?x∈A,?y∈B,使得x+y=0成立,則稱函數(shù)f(x)具有性質(zhì)P.給出下列三個函數(shù):①;②;③y=lgx.其中,具有性質(zhì)P的函數(shù)的序號是_____14.如圖,在長方體ABCD—中,AB=3cm,AD=2cm,,則三棱錐的體積___________.15.已知函數(shù),若、、、、滿足,則的取值范圍為______.16.若sinθ=,求的值_______三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知函數(shù)(1)求證:在上是單調(diào)遞增函數(shù);(2)若在上的值域是,求a的值18.已知函數(shù)(1)若是偶函數(shù),求a的值;(2)若對任意,不等式恒成立,求a的取值范圍19.已知函數(shù),.(1)對任意的,恒成立,求實數(shù)k的取值范圍;(2)設(shè),證明:有且只有一個零點,且.20.如圖,已知等腰梯形中,,,是的中點,,將沿著翻折成,使平面平面.(1)求證:平面;(2)求與平面所成的角;(3)在線段上是否存在點,使得平面,若存在,求出的值;若不存在,說明理由.21.設(shè)函數(shù)當(dāng)時,求函數(shù)的零點;若,當(dāng)時,求x的取值范圍

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】根據(jù)三視圖的法則:長對正,高平齊,寬相等;可得幾何體如右圖所示,這是一個三棱柱.表面積為:故答案為B.2、C【解析】根據(jù)題意列出不等式,利用對數(shù)換底公式,計算出結(jié)果.【詳解】經(jīng)過年后,植被面積為公頃,由,得.因為,所以,又因為,故植被面積達到4000公頃至少需要經(jīng)過的年數(shù)為8.故選:C3、C【解析】根據(jù)題意,列出所有可能,結(jié)合古典概率,即可求解.【詳解】甲、乙、丙3人投中與否的所有情況為:(中,中,中),(中,中,不中),(中,不中,中),(中,不中,不中),(不中,中,中),(不中,中,不中),(不中,不中,中),(不中,不中,不中),共8種,其中至多有1人投中的有4種,故所求概率為故選:C.4、B【解析】先畫出實驗數(shù)據(jù)的散點圖,結(jié)合各選項中的函數(shù)特征可得的選項.【詳解】實驗數(shù)據(jù)的散點圖如圖所示:4個選項中的函數(shù),只有B符合,故選:B.5、A【解析】如圖由題意點B關(guān)于所在直線的對稱點為B1,所以∠BOA=∠B1OA,所以又由平行四邊形法則知:,且向量的方向與向量的方向相同,由數(shù)量積的概念向量在向量方向上的投影是OM=,設(shè)與向量方向相同的單位向量為:,所以向量=2=2=,所以=.故選A.點睛:本題利用平行四邊形法則表示和向量,因為對稱,所以借助數(shù)量積定義中的投影及單位向量即可表示出和向量,解題時要善于借助圖像特征體現(xiàn)向量的工具作用.6、B【解析】本題根據(jù)題意直接寫出命題的否定即可.【詳解】解:因為命題:,所以的否定:,故選:B【點睛】本題考查含有一個量詞的命題的否定,是基礎(chǔ)題.7、B【解析】分別令,,得到兩個方程,解方程組可求得結(jié)果【詳解】∵,∴當(dāng)時,,①,當(dāng)時,,②,,得,解得故選:B8、A【解析】由題意可得,,,,.故A正確考點:三角函數(shù)單調(diào)性9、D【解析】直接利用特殊值檢驗及其不等式的性質(zhì)判斷即可.【詳解】對于選項A,令,,但,則A錯誤;對于選項B,令,,但,則B錯誤;對于選項C,當(dāng)時,,則C錯誤;對于選項D,有不等式的可加性得,則D正確,故選:D.10、D【解析】A.由面面垂直的判定定理判斷;B.由面面平行的性質(zhì)定理判斷;C.由線面平行的性質(zhì)定理判斷;D.由平面與平面的位置關(guān)系判斷;【詳解】A.如果,,,由面面垂直的判定定理得,故正確;B.如果,,由面面平行的性質(zhì)定理得,故正確;C.如果,,,由線面平行的性質(zhì)定理得,故正確;D如果,,,那么相交或平行,故錯誤;故選:D【點睛】本題主要考查空間中線線、線面、面面間的位置關(guān)系,還考查了理解辨析和邏輯推理的能力,屬于中檔題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】由已知得,所以,所以答案:點睛:向量數(shù)量積的求法及注意事項:(1)計算數(shù)量積的三種方法:定義、坐標運算、數(shù)量積的幾何意義,要靈活選用,和圖形有關(guān)的不要忽略數(shù)量積幾何意義的應(yīng)用(2)求向量模的常用方法:利用公式,將模的運算轉(zhuǎn)化為向量的數(shù)量積的運算,解題時要注意向量數(shù)量積運算率的靈活應(yīng)用(3)利用向量垂直或平行的條件構(gòu)造方程或函數(shù)是求參數(shù)或最值問題常用的方法與技巧12、【解析】根據(jù)題意求出函數(shù)的單調(diào)區(qū)間及所過的定點,進而解出不等式.【詳解】因為是定義在R上的偶函數(shù),且在上為增函數(shù),,所以函數(shù)在上為減函數(shù),.所以且在上為增函數(shù),,在上為減函數(shù),.所以的解集為:.故答案為:.13、①③【解析】A即為函數(shù)的定義域,B即為函數(shù)的值域,求出每個函數(shù)的定義域及值域,直接判斷即可【詳解】對①,A=(﹣∞,0)∪(0,+∞),B=(﹣∞,0)∪(0,+∞),顯然對于?x∈A,?y∈B,使得x+y=0成立,即具有性質(zhì)P;對②,A=R,B=(0,+∞),當(dāng)x>0時,不存在y∈B,使得x+y=0成立,即不具有性質(zhì)P;對③,A=(0,+∞),B=R,顯然對于?x∈A,?y∈B,使得x+y=0成立,即具有性質(zhì)P;故答案為:①③【點睛】本題以新定義為載體,旨在考查函數(shù)的定義域及值域,屬于基礎(chǔ)題14、1【解析】根據(jù)題意,求得棱錐的底面積和高,由體積公式即可求得結(jié)果.【詳解】根據(jù)題意可得,平面,故可得,又因為,故可得.故答案為:.【點睛】本題考查三棱錐體積的求解,涉及轉(zhuǎn)換棱錐的頂點,屬基礎(chǔ)題.15、【解析】設(shè),作出函數(shù)的圖象,可得,利用對稱性可得,由可求得,進而可得出,利用二次函數(shù)的基本性質(zhì)可求得的取值范圍.【詳解】作出函數(shù)的圖象如下圖所示:設(shè),當(dāng)時,,由圖象可知,當(dāng)時,直線與函數(shù)的圖象有五個交點,且點、關(guān)于直線對稱,可得,同理可得,由,可求得,所以,.因此,的取值范圍是.故答案為:.【點睛】方法點睛:已知函數(shù)有零點(方程有根)求參數(shù)值(取值范圍)常用的方法:(1)直接法:直接求解方程得到方程的根,再通過解不等式確定參數(shù)范圍;(2)分離參數(shù)法:先將參數(shù)分離,轉(zhuǎn)化成求函數(shù)的值域問題加以解決;(3)數(shù)形結(jié)合法:先對解析式變形,進而構(gòu)造兩個函數(shù),然后在同一平面直角坐標系中畫出函數(shù)的圖象,利用數(shù)形結(jié)合的方法求解.16、6【解析】先通過誘導(dǎo)公式對原式進行化簡,然后通分,進而通過同角三角函數(shù)的平方關(guān)系將原式轉(zhuǎn)化為只含的式子,最后得到答案.【詳解】原式=+,因為,所以.所以.故答案為:6.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2)【解析】(1)利用函數(shù)單調(diào)性的定義,設(shè),再將變形,證明差為正即可;(2))由(1)在上是單調(diào)遞增函數(shù),從而在上單調(diào)遞增,由可求得a的值.【詳解】,在上是單調(diào)遞增函數(shù),(2)在上是單調(diào)遞增函數(shù),在上單調(diào)遞增,所以.【點睛】本題考查函數(shù)單調(diào)性的判斷與證明,著重考查函數(shù)單調(diào)性的定義及其應(yīng)用,屬于中檔題.18、(1)0(2)【解析】(1)由偶函數(shù)的定義得出a的值;(2)由分離參數(shù)得,利用換元法得出的最小值,即可得出a的取值范圍【小問1詳解】因為是偶函數(shù),所以,即,故【小問2詳解】由題意知在上恒成立,則,又因為,所以,則.令,則,可得,又因為,當(dāng)且僅當(dāng)時,等號成立,所以,即a的取值范圍是19、(1);(2)證明見解析.【解析】(1)利用的單調(diào)性以及對數(shù)函數(shù)的單調(diào)性,即可求出的范圍(2)對進行分類討論,分為:和,利用零點存在定理和數(shù)形結(jié)合進行分析,即可求解【詳解】解:(1)因為是增函數(shù),是減函數(shù),所以在上單調(diào)遞增.所以的最小值為,所以,解得,所以實數(shù)k的取值范圍是.(2)函數(shù)的圖象在上連續(xù)不斷.①當(dāng)時,因為與在上單調(diào)遞增,所以在上單調(diào)遞增.因為,,所以.根據(jù)函數(shù)零點存在定理,存在,使得.所以在上有且只有一個零點.②當(dāng)時,因為單調(diào)遞增,所以,因為.所以.所以在上沒有零點.綜上:有且只有一個零點.因為,即,所以,.因為在上單調(diào)遞減,所以,所以.【點睛】關(guān)鍵點睛:對進行分類討論時,①當(dāng)時,因為與在上單調(diào)遞增,再結(jié)合零點存在定理,即可求解;②當(dāng)時,恒成立,所以,在上沒有零點;最后利用,得到,然后化簡可求解。本題考查函數(shù)的性質(zhì),函數(shù)的零點等知識;考查學(xué)生運算求解,推理論證的能力;考查數(shù)形結(jié)合,分類與整合,函數(shù)與方程,化歸與轉(zhuǎn)化的數(shù)學(xué)思想,屬于難題20、(1)證明見解析;(2)30°;(3)存在,.【解析】(1)首先根據(jù)已知條件并結(jié)合線面垂直的判定定理證明平面,再證明即可求解;(2)根據(jù)(1)中結(jié)論找出所求角,再結(jié)合已知條件即可求解;(3)首先假設(shè)存在,然后根據(jù)線面平行的性質(zhì)以及已知條件,看是否能求出點的具體位置,即可求解.【詳解】(1)因為,是的中點,所以,故四邊形是菱形,從而,所以沿著翻折成后,,又因為,所以平面,由題意,易知,,所以四邊形是平行四邊形,故,所以平面;(2)因為平面,所以與平面所成的角為,由已知條件,可知,,所以是正三角形,所以,所以與平面所成的角為30°;(3)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論