版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
內(nèi)蒙古赤峰市第二中學2026屆高二上數(shù)學期末教學質(zhì)量檢測試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.直線的傾斜角為()A.150° B.120°C.60° D.30°2.已知數(shù)列的前n項和為,,,則=()A. B.C. D.3.復數(shù),則對應的點所在的象限是()A.第一象限 B.第二象限C.第三象限 D.第四象限4.已知橢圓的左、右焦點分別是,焦距,過點的直線與橢圓交于兩點,若,且,則橢圓C的方程為()A. B.C. D.5.已知半徑為2的圓經(jīng)過點(5,12),則其圓心到原點的距離的最小值為()A.10 B.11C.12 D.136.東漢末年的數(shù)學家趙爽在《周髀算經(jīng)》中利用一副“弦圖”,根據(jù)面積關系給出了勾股定理的證明,后人稱其為“趙爽弦圖”.如圖1,它由四個全等的直角三角形與一個小正方形拼成的一個大正方形.我們通過類比得到圖2,它是由三個全等的鈍角三角形與一個小等邊三角形拼成的一個大等邊三角形.對于圖2.下列結(jié)論正確的是()①這三個全等的鈍角三角形不可能是等腰三角形;②若,,則;③若,則;④若是的中點,則三角形的面積是三角形面積的7倍.A.①②④ B.①②③C.②③④ D.①③④7.方程表示的圖形是A.兩個半圓 B.兩個圓C.圓 D.半圓8.已知雙曲線:的左、右焦點分別為,,過點且斜率為的直線與雙曲線在第二象限的交點為,若,則雙曲線的離心率是()A B.C. D.9.若數(shù)列滿足,,則該數(shù)列的前2021項的乘積是()A. B.C.2 D.110.若曲線表示圓,則m的取值范圍是()A. B.C. D.11.圓的圓心坐標與半徑分別是()A. B.C. D.12.函數(shù),則的值為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知實數(shù),滿足,則的最大值為______.14.已知圓的圓心與點關于直線對稱,直線與圓相交于、兩點,且,則圓的方程為_________15.設函數(shù)滿足,則______.16.已知曲線,則以下結(jié)論正確的是______.①曲線C關于點對稱;②曲線C關于y軸對稱;③曲線C被x軸所截得的弦長為2;④曲線C上的點到原點距離都不超過2.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知曲線:.(1)若曲線是雙曲線,求的取值范圍;(2)設,已知過曲線的右焦點,傾斜角為的直線交曲線于A,B兩點,求.18.(12分)已知兩定點,,動點與兩定點的斜率之積為(1)求動點M的軌跡方程;(2)設(1)中所求曲線為C,若斜率為的直線l過點,且與C交于P,Q兩點.問:在x軸上是否存在一點T,使得對任意且,都有(其中,分別表示,的面積).若存在,請求出點T的坐標;若不存在,請說明理由19.(12分)已知首項為1的數(shù)列滿足.(1)求數(shù)列的通項公式;(2)記,求數(shù)列的前n項和.20.(12分)如圖,在四棱錐中,平面,四邊形是菱形,,,是的中點(1)求證:;(2)已知二面角的余弦值為,求與平面所成角的正弦值21.(12分)已知圓M的方程為.(1)寫出圓M的圓心坐標和半徑;(2)經(jīng)過點的直線l被圓M截得弦長為,求l的方程.22.(10分)如圖,已知拋物線的焦點為,點是軸上一定點,過的直線交與兩點.(1)若過的直線交拋物線于,證明縱坐標之積為定值;(2)若直線分別交拋物線于另一點,連接交軸于點.證明:成等比數(shù)列.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】由斜率得傾斜角【詳解】直線的斜率為,所以傾斜角為30°.故選:D2、D【解析】利用公式計算得到,得到答案【詳解】由已知得,即,而,所以故選:D3、C【解析】化簡復數(shù),根據(jù)復數(shù)的幾何意義,即可求解.【詳解】由題意,復數(shù),所以復數(shù)對應的點為位于第三象限.故選:C.4、A【解析】畫出圖形,利用已知條件,推出,延長交橢圓于點,得到直角和直角,設,則,根據(jù)橢圓的定義轉(zhuǎn)化求解,即可求得橢圓的方程.【詳解】如圖所示,,則,延長交橢圓于點,可得直角和直角,設,則,根據(jù)橢圓的定義,可得,在直角中,,解得,又在中,,代入可得,所以,所以橢圓的方程為.故選:A.5、B【解析】由條件可得圓心的軌跡是以點為圓心,半徑為2的圓,然后可得答案.【詳解】因為半徑為2的圓經(jīng)過點(5,12),所以圓心的軌跡是以點為圓心,半徑為2的圓,所以圓心到原點的距離的最小值為,故選:B6、A【解析】對于①,由三角形大邊對大角的性質(zhì)分析,對于②,根據(jù)題意利用正弦定理分析,對于③,利用余弦定理分析,對于④,利用三角形的面積公式分析判斷【詳解】對于①,根據(jù)題意,圖2,它是由三個全等的鈍角三角形與一個小等邊三角形拼成的一個大等邊三角形,故,,所以這三個全等的鈍角三角形不可能是等腰三角形,故①正確;對于②,由題知,在中,,,,所以,所以由正弦定理得解得,因為,所以,故②正確;對于③,不妨設,所以在中,由余弦定理得,代入數(shù)據(jù)得,所以,所以,故③錯誤;對于④,若是的中點,則,所以,故④正確.故選:A第II卷(非選擇題7、D【解析】其中,再兩邊同時平方,由此確定圖形【詳解】根據(jù)題意,,再兩邊同時平方,由此確定圖形為半圓.故選:D【點睛】幾何圖像中要注意與方程式是一一對應,故方程的中未知數(shù)的的取值范圍對應到圖形中的坐標的取值范圍8、B【解析】根據(jù)得到三角形為等腰三角形,然后結(jié)合雙曲線的定義得到,設,進而作,得出,由此求出結(jié)果【詳解】因為,所以,即所以,由雙曲線的定義,知,設,則,易得,如圖,作,為垂足,則,所以,即,即雙曲線的離心率為.故選:B9、C【解析】先由數(shù)列滿足,,計算出前5項,可得,且,再利用周期性即可得到答案.【詳解】因為數(shù)列滿足,,所以,同理可得,…所以數(shù)列每四項重復出現(xiàn),即,且,而,所以該數(shù)列的前2021項的乘積是.故選:C.10、C【解析】按照圓的一般方程滿足的條件求解即可.【詳解】或.故選:C.11、C【解析】將圓的一般方程化為標準方程,即可得答案.【詳解】由題可知,圓的標準方程為,所以圓心為,半徑為3,故選.12、B【解析】求出函數(shù)的導數(shù),代入求值即可.【詳解】函數(shù),故,所以,故選:B二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由約束條件作出可行域,化目標函數(shù)為直線方程的斜截式,數(shù)形結(jié)合得到最優(yōu)解,聯(lián)立方程組得到最優(yōu)解的坐標,代入目標函數(shù)得答案.【詳解】由約束條件作出可行域如圖所示,化目標函數(shù)為,由圖可知,當直線過點時,直線在y軸上的截距最大,z最大,聯(lián)立方程組,解得點,則取得最大值為.故答案為:【點睛】本題考查的是線性規(guī)劃問題,解決線性規(guī)劃問題的實質(zhì)是把代數(shù)問題幾何化,即數(shù)形結(jié)合的思想,需要注意的是:一,準確無誤作出可行域;二,畫目標函數(shù)所對應直線時,要注意讓其斜率與約束條件中的直線的斜率比較;三,一般情況下,目標函數(shù)的最值會在可行域的端點或邊界上取得.14、【解析】利用對稱條件求出圓心C的坐標,借助直線被圓所截弦長求出圓半徑即可寫出圓的方程.【詳解】設圓的圓心,依題意,,解得,即圓心,點C到直線的距離,因圓截直線所得弦AB長為6,于是得圓C的半徑所以圓的方程為:.故答案為:15、5【解析】考點:函數(shù)導數(shù)與求值16、②④【解析】將x換成,將y換成,若方程不變則關于原點對稱;將x換成,曲線的方程不變則關于y軸對稱;令通過解方程即可求得被x軸所截得的弦長;利用基本不等式即可判斷出曲線C上y軸右側(cè)的點到原點距離是否不超過2,根據(jù)曲線C關于y軸對稱,即可判斷出曲線C上的點到原點距離是否都不超過2.【詳解】對于①,將x換成,將y換成,方程改變,則曲線C關于點不對稱,故①錯誤;對于②,將x換成,曲線的方程不變,則曲線C關于y軸對稱,故②正確;對于③,令得,,解得,即曲線C與x軸的交點為和,則曲線C被x軸所截得的弦長為,故③錯誤;對于④,當時,,可得,當且僅當時取等號,即,則,即曲線C上y軸右側(cè)的點到原點的距離都不超過2,此曲線關于y軸對稱,即曲線C上y軸左側(cè)的點到原點的距離也不超過2,故④正確;故答案為:②④.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)利用雙曲線的標準方程直接列不等式組,即可求解;(2)先求出直線l的方程為:,利用“設而不求法”和弦長公式求弦長.【小問1詳解】要使曲線:為雙曲線,只需,解得:,即的取值范圍.【小問2詳解】當m=0時,曲線C的方程為,可得,所以右焦點,由題意可得直線l的方程為:.設,聯(lián)立整理可得:,可得:所以弦長,所以18、(1)(2)存在;【解析】(1)設出點的坐標,根據(jù),即可直接求出動點M的軌跡方程;(2)根據(jù)題意寫出直線的方程,把直線的方程與曲線的方程聯(lián)立,消元,寫韋達;根據(jù)條件,同時結(jié)合三角形的面積公式可得出;從而結(jié)合韋達定理可求出點T的坐標.【小問1詳解】設,由,得,即,所以動點M的軌跡方程為.【小問2詳解】設PT與RT夾角為,QT與RT夾角為,因為,所以,即,所以,設,,,直線l的方程為,因為,所以,即,所以,即①,由,得,所以,代入①式,得,解得,所以存在點,使得對任意且,都有.19、(1)(2)【解析】(1)由,構造是以為首項,為公比等比數(shù)列,利用等比數(shù)列的通項公式可得結(jié)果;(2)由(1)得,利用裂項相消可求.【小問1詳解】由,得,又,所以數(shù)列是首項為2,公比為2的等比數(shù)列,則,即,故數(shù)列的通項公式為.【小問2詳解】由(1)知,,所以.因為,所以,所以數(shù)列的前n項和.20、(1)證明見解析;(2).【解析】(1)由菱形及線面垂直的性質(zhì)可得、,再根據(jù)線面垂直的判定、性質(zhì)即可證結(jié)論.(2)構建空間直角坐標系,設,結(jié)合已知確定相關點坐標,進而求面、面的法向量,結(jié)合已知二面角的余弦值求出參數(shù)t,再根據(jù)空間向量夾角的坐標表示求與平面所成角的正弦值【小問1詳解】由平面,平面,則,又是菱形,則,又,所以平面,平面所以E.【小問2詳解】分別以,,為,,軸正方向建立空間直角坐標系,設,則,由(1)知:平面的法向量為,令面的法向量為,則,令,可得,因為二面角的余弦值為,則,可得,則,設與平面所成的角為,又,,所以.21、(1)圓心坐標為,半徑為2(2)或【解析】(1)求得圓的標準方程,從而求得圓心和半徑.(2)根據(jù)直線的斜率存在和不存在進行分類討論,由此求得的方程.【小問1詳解】圓的標準方程為:.所以圓M的圓心坐標為,半徑為2.【小問2詳解】因為圓M半徑為2,直線l被圓M截得弦長為,由垂徑定理可知M到直線距離為1.當l不垂直于軸時,設,即,則.解得
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 基孔肯雅熱診療方案總結(jié)2026
- 道路安全培訓目的
- 2026年魯教版四年級英語上冊月考題庫試題附答案
- 道路交通安全云講堂課件
- 道橋安全培訓個人總結(jié)課件
- 2026年甘肅省蘭州市高職單招職業(yè)適應性測試試題含答案
- 2025細胞因子吸附器在體外循環(huán)心臟手術中的應用課件
- 通信號lot設計技術筆試試題
- 車險小知識課件
- 車隊年底安全培訓內(nèi)容課件
- 第四單元課題3物質(zhì)組成的表示第3課時物質(zhì)組成的定量認識-九年級化學人教版上冊
- 交警國省道巡邏管控課件
- DB11∕T 693-2024 施工現(xiàn)場臨建房屋應用技術標準
- T/CSBME 065-2023醫(yī)用敷料材料聚氨酯泡沫卷材
- T/CECS 10310-2023水性聚氨酯防水涂料
- T/CCT 007-2024煤化工廢水處理運營能力評價
- GB/T 45554-2025種豬生產(chǎn)性能測定技術規(guī)范
- 食品居間合同協(xié)議
- 2022學年上海復旦附中高一(上)期末信息技術試題及答案
- 廣東省廣州市白云區(qū)2024-2025學年六年級(上)期末語文試卷(有答案)
- 心內(nèi)科護理帶教工作總結(jié)
評論
0/150
提交評論