山東省德州市樂陵市第一中學(xué)2026屆數(shù)學(xué)高二上期末監(jiān)測試題含解析_第1頁
山東省德州市樂陵市第一中學(xué)2026屆數(shù)學(xué)高二上期末監(jiān)測試題含解析_第2頁
山東省德州市樂陵市第一中學(xué)2026屆數(shù)學(xué)高二上期末監(jiān)測試題含解析_第3頁
山東省德州市樂陵市第一中學(xué)2026屆數(shù)學(xué)高二上期末監(jiān)測試題含解析_第4頁
山東省德州市樂陵市第一中學(xué)2026屆數(shù)學(xué)高二上期末監(jiān)測試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

山東省德州市樂陵市第一中學(xué)2026屆數(shù)學(xué)高二上期末監(jiān)測試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知等差數(shù)列的前項和為,,公差,.若取得最大值,則的值為()A.6或7 B.7或8C.8或9 D.9或102.如圖,在三棱柱中,E,F(xiàn)分別是BC,中點,,則()A.B.C.D.3.用反證法證明命題“a,b∈N,如果ab可以被5整除,那么a,b至少有1個能被5整除.”假設(shè)內(nèi)容是()A.a,b都能被5整除 B.a,b都不能被5整除C.a不能被5整除 D.a,b有1個不能被5整除4.《九章算術(shù)》與《幾何原本》并稱現(xiàn)代數(shù)學(xué)的兩大源泉.在《九章算術(shù)》卷五商功篇中介紹了羨除(此處是指三面為等腰梯形,其他兩側(cè)面為直角三角形的五面體)體積的求法.在如圖所示的羨除中,平面是鉛垂面,下寬,上寬,深,平面BDEC是水平面,末端寬,無深,長(直線到的距離),則該羨除的體積為()A. B.C. D.5.若直線過點(1,2),(4,2+),則此直線的傾斜角是()A.30° B.45°C.60° D.90°6.若,則復(fù)數(shù)在復(fù)平面內(nèi)對應(yīng)的點在()A.曲線上 B.曲線上C.直線上 D.直線上7.已知橢圓與雙曲線有共同的焦點,則()A.14 B.9C.4 D.28.若直線與雙曲線相交,則的取值范圍是A. B.C. D.9.已知橢圓的左右焦點分別為,直線與C相交于M,N兩點(其中M在第一象限),若M,,N,四點共圓,且直線傾斜角不小于,則橢圓C的離心率e的取值范圍是()A. B.C. D.10.若在直線上,則直線的一個方向向量為()A. B.C. D.11.函數(shù)極小值為()A. B.C. D.12.如圖,在三棱錐中,點E在上,滿足,點F為的中點,記分別為,則()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.直線與直線的夾角大小等于_______14.在一平面直角坐標(biāo)系中,已知,現(xiàn)沿x軸將坐標(biāo)平面折成60°的二面角,則折疊后A,B兩點間的距離為___________.15.若直線與函數(shù)的圖象有三個交點,則實數(shù)a的取值范圍是_________16.已知點P在圓上,已知,,則的最小值為___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,已知直三棱柱中,,,E,F(xiàn)分別為AC和的中點,D為棱上的一點.(1)證明:;(2)當(dāng)平面DEF與平面所成的銳二面角的余弦值為時,求點B到平面DFE距離.18.(12分)已知單調(diào)遞增的等比數(shù)列滿足:,且是,的等差中項(1)求數(shù)列的通項公式;(2)若,,求19.(12分)已知圓C:,圓C與x軸交于A,B兩點(1)求直線y=x被圓C所截得的弦長;(2)圓M過點A,B,且圓心在直線y=x+1上,求圓M的方程20.(12分)已知函數(shù)(1)當(dāng)時,求的單調(diào)區(qū)間與極值;(2)若不等式在區(qū)間上恒成立,求k的取值范圍21.(12分)已知函數(shù)(Ⅰ)討論函數(shù)的極值點的個數(shù)(Ⅱ)若,,求的取值范圍22.(10分)某校高三年級進行了一次數(shù)學(xué)測試,全年級學(xué)生的成績都落在區(qū)間內(nèi),其成績的頻率分布直方圖如圖所示,若(1)求a,b的值;(2)若成績落在區(qū)間內(nèi)的人數(shù)為36人,請估計該校高三學(xué)生的人數(shù)

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】根據(jù)題意可知等差數(shù)列是,單調(diào)遞減數(shù)列,其中,由此可知,據(jù)此即可求出結(jié)果.【詳解】在等差數(shù)列中,所以,所以,即,又等差數(shù)列中,公差,所以等差數(shù)列是單調(diào)遞減數(shù)列,所以,所以等差數(shù)列的前項和為取得最大值,則的值為7或8.故選:B.2、D【解析】根據(jù)空間向量線性運算的幾何意義進行求解即可.【詳解】,故選:D3、B【解析】由于反證法是命題的否定的一個運用,故用反證法證明命題時,可以設(shè)其否定成立進行推證.命題“a,b∈N,如果ab可被5整除,那么a,b至少有1個能被5整除.”的否定是“a,b都不能被5整除”考點:反證法4、C【解析】在,上分別取點,,使得,連接,,,把幾何體分割成一個三棱柱和一個四棱錐,然后由棱柱、棱錐體積公式計算【詳解】如圖,在,上分別取點,,使得,連接,,,則三棱柱是斜三棱柱,該羨除的體積三棱柱四棱錐.故選:C【點睛】思路點睛:本題考查求空間幾何體的體積,解題思路是觀察幾何體的結(jié)構(gòu)特征,合理分割,將不規(guī)則幾何體體積的計算轉(zhuǎn)化為錐體、柱體體積的計算.考查了空間想象能力、邏輯思維能力、運算求解能力5、A【解析】求出直線的斜率,由斜率得傾斜角【詳解】由題意直線斜率為,所以傾斜角為故選:A6、B【解析】根據(jù)復(fù)數(shù)的除法運算,先化簡,進而求出,再由復(fù)數(shù)的幾何意義,即可得出結(jié)果.【詳解】因為,所以,因此復(fù)數(shù)在復(fù)平面內(nèi)對應(yīng)的點為,可知其在曲線上.故選:B7、C【解析】根據(jù)給定條件結(jié)合橢圓、雙曲線方程的特點直接列式計算作答.【詳解】設(shè)橢圓半焦距為c,則,而橢圓與雙曲線有共同的焦點,則在雙曲線中,,即有,解得,所以.故選:C8、C【解析】聯(lián)立直線和雙曲線的方程得到,即得的取值范圍.【詳解】聯(lián)立直線和雙曲線的方程得當(dāng),即時,直線和雙曲線的漸近線重合,所以直線與雙曲線沒有公共點.當(dāng),即時,,解之得.故選:C.【點睛】本題主要考查直線和雙曲線的位置關(guān)系,意在考查學(xué)生對這些知識的掌握水平和分析推理能力.9、B【解析】設(shè)橢圓的半焦距為c,由橢圓的中心對稱性和圓的性質(zhì)得以為直徑的圓與橢圓C有公共點,則有以,再根據(jù)直線傾斜角不小于得,由橢圓的定義得,由此可求得橢圓離心率的范圍.【詳解】解:設(shè)橢圓的半焦距為c,由橢圓的中心對稱性和M,,N,四點共圓得,四邊形必為一個矩形,即以為直徑的圓與橢圓C有公共點,所以,所以,所以,因為直線傾斜角不小于,所以直線傾斜角不小于,所以,化簡得,,因為,所以,所以,,又,因為,所以,所以,所以,所以.故選:B.10、D【解析】由題意可得首先求出直線上的一個向量,即可得到它的一個方向向量,再利用平面向量共線(平行)的坐標(biāo)表示即可得出答案【詳解】∵在直線上,∴直線的一個方向向量,又∵,∴是直線的一個方向向量故選:D11、A【解析】利用導(dǎo)數(shù)分析函數(shù)的單調(diào)性,可求得該函數(shù)的極小值.【詳解】對函數(shù)求導(dǎo)得,令,可得或,列表如下:減極小值增極大值減所以,函數(shù)的極小值為.故選:A.12、B【解析】利用空間向量加減、數(shù)乘的幾何意義,結(jié)合三棱錐用表示出即可.【詳解】由題設(shè),,,,.故選:B二、填空題:本題共4小題,每小題5分,共20分。13、##【解析】根據(jù)直線的傾斜角可得答案.【詳解】直線是與軸平行的直線,直線的斜率為1,即與軸的夾角為角,故直線與直線的夾角大小等于.故答案為:.14、【解析】平面直角坐標(biāo)系中,沿軸將坐標(biāo)平面折成的二面角后,在平面上的射影為,作軸,交軸于點,通過用向量的數(shù)量積轉(zhuǎn)化求解距離即可.【詳解】在直角坐標(biāo)系中,已知,現(xiàn)沿軸將坐標(biāo)平面折成的二面角后,在平面上的射影為,作軸,交軸于點,所以,所以,所以,故答案為:15、【解析】求導(dǎo)函數(shù),分析導(dǎo)函數(shù)的符號,得出原函數(shù)的單調(diào)性和極值,由此可求得答案.【詳解】解:因為函數(shù),則,所以當(dāng)或時,,函數(shù)單調(diào)遞減;當(dāng)時,,函數(shù)單調(diào)遞增,所以當(dāng)時,函數(shù)取得極小值,當(dāng)時,函數(shù)取得極大值,因為直線與函數(shù)的圖象有三個交點,所以實數(shù)a的取值范圍是,故答案為:.16、【解析】推導(dǎo)出極化恒等式,即,結(jié)合最小值為,求出最小值.【詳解】由題意,取線段AB中點,則,,兩式分別平方得:①,②,①-②得:,因為圓心到距離為,所以最小值為,又,故最小值為:.故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)【解析】(1)建立空間直角坐標(biāo)系,利用向量法證得.(2)利用平面DEF與平面所成的銳二面角的余弦值列方程,求得,結(jié)合向量法求得到平面的距離.【小問1詳解】以B為坐標(biāo)原點,為x軸正方向建立如圖所示的建立空間直角坐標(biāo)系.設(shè),可得,,,.,.因為,所以.【小問2詳解】,設(shè)為平面DEF的法向量,則,即,可取.因為平面的法向量為,所以.由題設(shè),可得,所以.點B到DFE平面距離.18、(1);(2)【解析】(1)將已知條件整理變形為等比數(shù)列的首項和公比來表示,解方程組得到基本量,可得到通項公式(2)化簡通項得,根據(jù)特點求和時采用錯位相減法求解試題解析:(1)設(shè)等比數(shù)列的首項為,公比為,依題意,有2()=+,代入,得=8,2分∴+=20∴解之得或4分又單調(diào)遞增,∴="2,"=2,∴=2n6分(2),∴①8分∴②∴①-②得=12分考點:1.等比數(shù)列通項公式;2.錯位相減求和19、(1);(2).【解析】(1)根據(jù)已知條件,結(jié)合垂徑定理,以及點到直線的距離公式,即可求解(2)根據(jù)已知圓的方程,令y=0,結(jié)合韋達定理,求出圓心的橫坐標(biāo),即可求出圓心,再結(jié)合勾股定理,即可求出半徑【小問1詳解】∵圓C:,∴,即圓心為(-1,1),半徑r=3,∵直線y=x,即x-y=0,∴圓心(-1,1)到直線x-y=0的距離d=,∴直線y=x被圓C所截得的弦長為=【小問2詳解】設(shè)A(x1,y1),B(x2,y2),∵圓C:,圓C與x軸交于A,B兩點,∴x2-2x-7=0,則,|x1-x2|==,∴圓心的橫坐標(biāo)為x=,∵圓心在直線y=x+1上,∴圓心為(1,2),∴半徑r=,故圓M的方程為20、(1)在上單調(diào)遞增,在上單調(diào)遞減,極大值為﹣1,無極小值(2)【解析】(1)利用導(dǎo)數(shù)求出單調(diào)區(qū)間,即可求出極值;(2)令,利用分離參數(shù)法得到,利用導(dǎo)數(shù)求出的最大值即可求解.【小問1詳解】當(dāng)時,,定義域為,當(dāng)時,,單調(diào)遞增;當(dāng)時,,單調(diào)遞減∴當(dāng)時,取得極大值﹣1所以在上單調(diào)遞增,在上單調(diào)遞減極大值為﹣1,無極小值【小問2詳解】由,得,令,只需.求導(dǎo)得,所以當(dāng)時,,單調(diào)遞增,當(dāng)時,,單調(diào)遞減,∴當(dāng)時,取得最大值,∴k的取值范圍為21、(Ⅰ)答案見解析;(Ⅱ).【解析】(Ⅰ)求得,分,和三種情況討論,求得函數(shù)的單調(diào)性,結(jié)合極值的概念,即可求解;(Ⅱ)由不等式,轉(zhuǎn)化為當(dāng)時,不等式恒成立,設(shè),利用導(dǎo)數(shù)求得函數(shù)的單調(diào)性與最值,即可求解.【詳解】(Ⅰ)由題意,函數(shù)的定義域為,且,當(dāng)時,令,解得,令,解得或,故在上單調(diào)遞減,在,上單調(diào)遞增,所以有一個極值點;當(dāng)時,令,解得或,令,得,故在,上單調(diào)遞減,在上單調(diào)遞增,所以有一個極值點;當(dāng)時,上單調(diào)遞增,在上單調(diào)遞減,所以沒有極值點綜上所述,當(dāng)時,有個極值點;當(dāng)時,沒有極值點.(Ⅱ)由,即,可得,即當(dāng)時,不等式恒成立,設(shè),則設(shè),則因為,所以,所以在上單調(diào)遞增,所以,所以在上單調(diào)遞減,在上單調(diào)遞增,所以,所以所以的取值范圍是.【點睛】對于利用導(dǎo)數(shù)研究不等式的恒成立問題的求解策略:1、通常要構(gòu)造新函數(shù),利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,求出最值,從而求出參數(shù)的取值范圍;2、利用可分離變量,構(gòu)造新函數(shù),直

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論