版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
陜西銅川市同官高級中學(xué)2026屆高二上數(shù)學(xué)期末聯(lián)考試題注意事項1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設(shè)是空間一定點,為空間內(nèi)任一非零向量,滿足條件的點構(gòu)成的圖形是()A.圓 B.直線C.平面 D.線段2.在直三棱柱中,,且,點是棱上的動點,則點到平面距離的最大值是()A. B.C.2 D.3.若方程表示圓,則實數(shù)m的取值范圍為()A B.C. D.4.中心在原點的雙曲線C的右焦點為,實軸長為2,則雙曲線C的方程為()A. B.C. D.5.直線l經(jīng)過兩條直線和的交點,且平行于直線,則直線l的方程為()A. B.C. D.6.某中學(xué)的校友會為感謝學(xué)校的教育之恩,準(zhǔn)備在學(xué)校修建一座四角攢尖的思源亭如圖它的上半部分的輪廓可近似看作一個正四棱錐,已知此正四棱錐的側(cè)面與底面所成的二面角為30°,側(cè)棱長為米,則以下說法不正確()A.底面邊長為6米 B.體積為立方米C.側(cè)面積為平方米 D.側(cè)棱與底面所成角的正弦值為7.已知,,直線:,:,且,則的最小值為()A.2 B.4C.8 D.98.下列求導(dǎo)不正確的是()A B.C. D.9.若圓的半徑為,則實數(shù)()A. B.-1C.1 D.10.已知數(shù)列中,,,是的前n項和,則()A. B.C. D.11.等差數(shù)列中,,,則()A.6 B.7C.8 D.912.若函數(shù)在區(qū)間內(nèi)存在最大值,則實數(shù)的取值范圍是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.某學(xué)校要從6名男生和4名女生中選出3人擔(dān)任進(jìn)博會志愿者,則所選3人中男女生都有的概率為___________.(用數(shù)字作答)14.已知5道試題中有3道代數(shù)題和2道幾何題,每次從中抽取一道題,抽出的題不再放回,在第1次抽到代數(shù)題的條件下,第2次抽到幾何題的概率為________.15.已知數(shù)列滿足下列條件:①數(shù)列是等比數(shù)列;②數(shù)列是單調(diào)遞增數(shù)列;③數(shù)列的公比滿足.請寫出一個符合條件的數(shù)列的通項公式__________.16.在數(shù)列中,,,則___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)求的單調(diào)遞增區(qū)間;(2)求在的最大值.18.(12分)已知等比數(shù)列滿足(1)求的通項公式;(2)記的前n項和為,證明:,,成等差數(shù)列19.(12分)如圖,在三棱錐中,,,為的中點.(1)求證:平面;(2)若點在棱上,且,求點到平面的距離.20.(12分)已知拋物線C:上有一動點,,過點P作拋物線C的切線交y軸于點Q(1)判斷線段PQ的垂直平分線是否過定點?若過,求出定點坐標(biāo);若不過,請說明理由;(2)過點P作垂線交拋物線C于另一點M,若切線的斜率為k,設(shè)的面積為S,求的最小值21.(12分)如圖,在直三棱柱中,平面?zhèn)让?,?(1)求證:;(2)若直線與平面所成的角為,請問在線段上是否存在點,使得二面角的大小為,若存在請求出的位置,不存在請說明理由.22.(10分)在中,角A,B,C的對邊分別為a,b,c,且求A和B的大??;若M,N是邊AB上的點,,求的面積的最小值
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】根據(jù)法向量的定義可判斷出點所構(gòu)成的圖形.【詳解】是空間一定點,為空間內(nèi)任一非零向量,滿足條件,所以,構(gòu)成的圖形是經(jīng)過點,且以為法向量的平面.故選:C.【點睛】本題考查空間中動點的軌跡,考查了法向量定義的理解,屬于基礎(chǔ)題.2、D【解析】建立空間直角坐標(biāo)系,設(shè)出點的坐標(biāo),運用點到平面的距離公式,求出點到平面距離的最大值.【詳解】解:以為原點,分別以,,所在直線為,,軸建立如圖所示的空間直角坐標(biāo)第,則,,,設(shè)點,故,,.設(shè)設(shè)平面的法向量為,則即,取,則.所以點到平面距離.當(dāng),即時,距離有最大值為.故選:D.【點睛】本題考查空間內(nèi)點到面的距離最值問題,屬于中檔題.3、D【解析】根據(jù),解不等式即可求解.【詳解】由方程表示圓,則,解得.所以實數(shù)m的取值范圍為.故選:D4、D【解析】根據(jù)條件,求出,的值,結(jié)合雙曲線的方程進(jìn)行求解即可【詳解】解:設(shè)雙曲線的方程為由已知得:,,再由,,雙曲線的方程為:故選:D5、B【解析】聯(lián)立已知兩條直線方程求出交點,再根據(jù)兩直線平行則斜率相同求出斜率即可.【詳解】由得兩直線交點為(-1,0),直線l斜率與相同,為,則直線l方程為y-0=(x+1),即x-2y+1=0.故選:B.6、D【解析】連接底面正方形的對角線交于點,連接,則為該正四棱錐的高,即平面,取的中點,連接,則的大小為側(cè)面與底面所成,設(shè)正方形的邊長為,求出該正四棱錐的底面邊長,斜高和高,然后對選項進(jìn)行逐一判斷即可.【詳解】連接底面正方形的對角線交于點,連接則為該正四棱錐的高,即平面取的中點,連接,由正四棱錐的性質(zhì),可得由分別為的中點,所以,則所以為二面角的平面角,由條件可得設(shè)正方形的邊長為,則,又則,解得故選項A正確.所以,則該正四棱錐的體積為,故選項B正確.該正四棱錐的側(cè)面積為,故選項C正確.由題意為側(cè)棱與底面所成角,則,故選項D不正確.故選:D7、C【解析】由,可求得,再由,利用基本不等式求出最小值即可.【詳解】因為,所以,即,因為,,所以,當(dāng)且僅當(dāng),即時等號成立,所以的最小值為8.故選:C.【點睛】本題考查垂直直線的性質(zhì),考查利用基本不等式求最值,考查學(xué)生的計算求解能力,屬于中檔題.8、C【解析】由導(dǎo)數(shù)的運算法則、復(fù)合函數(shù)的求導(dǎo)法則計算后可判斷【詳解】A:;B:;C:;D:故選:C9、B【解析】將圓的方程化為標(biāo)準(zhǔn)方程,即可求出半徑的表達(dá)式,從而可求出的值.【詳解】由題意,圓的方程可化為,所以半徑為,解得.故選:B.【點睛】本題考查圓的方程,考查學(xué)生的計算求解能力,屬于基礎(chǔ)題.10、D【解析】由,得到為遞增數(shù)列,又由,得到,化簡,即可求解.【詳解】解:由,得,又,所以,所以,即,所以數(shù)列為遞增數(shù)列,所以,得,即,又由是的前項和,則.故選:D.【點睛】關(guān)鍵點睛:本題考查數(shù)列求和問題,關(guān)鍵在于由已知條件得出,運用裂項相消求和法.11、C【解析】由等差數(shù)列的基本量法先求得公差,然后可得【詳解】設(shè)數(shù)列的公差為,則,,所以故選:C12、A【解析】利用函數(shù)的導(dǎo)數(shù),求解函數(shù)的極值,推出最大值,然后轉(zhuǎn)化列出不等式組求解的范圍即可【詳解】,或,∴在單調(diào)遞減,在單調(diào)遞增,在單調(diào)遞減,∴f(x)有極大值,要使f(x)在上有最大值,則極大值3即為該最大值,則,又或,∴,綜上,.故選:A.二、填空題:本題共4小題,每小題5分,共20分。13、##0.8【解析】由排列組合知識求得所選3人中男女生都有方法數(shù)及總的選取方法數(shù)后可計算概率【詳解】從6名男生和4名女生中選出3人的方法數(shù)是,所選3人中男女生都有的方法數(shù)為,所以概率為故答案為:14、.【解析】設(shè)事件:第1次抽到代數(shù)題,事件:第2次抽到幾何題,求得,結(jié)合條件概率的計算公式,即可求解.【詳解】由題意,從5道試題中有3道代數(shù)題和2道幾何題,每次從中抽取一道題,抽出不再放回,設(shè)事件:第1次抽到代數(shù)題,事件:第2次抽到幾何題,則,,所以在第1次抽到代數(shù)題的條件下,第2次抽到幾何題的概率為:.故答案為:.15、(答案不唯一)【解析】根據(jù)題意判斷數(shù)列特征,寫出一個符合題意的數(shù)列的通項公式即可.【詳解】因為數(shù)列是等比數(shù)列,數(shù)列是單調(diào)遞增數(shù)列,數(shù)列公比滿足,所以等比數(shù)列公比,且各項均為負(fù)數(shù),符合題意的一個數(shù)列的通項公式為.故答案為:(答案不唯一)16、##.【解析】由遞推關(guān)系取可求,再取求,取求.詳解】由分別取,2,3可得,,,又,∴,,,故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)利用兩角和的余弦公式以及輔助角公式可得,再由正弦函數(shù)單調(diào)區(qū)間,整體代入即可求解.(2)根據(jù)三角函數(shù)的單調(diào)性即可求解.【小問1詳解】,,解得,所以函數(shù)的單調(diào)遞增區(qū)間為【小問2詳解】由(1),解得函數(shù)的單調(diào)遞減區(qū)間為,所以函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,,,所以函數(shù)的最大值為.18、(1)(2)證明見解析【解析】(1)設(shè)等比數(shù)列的公比為,根據(jù),求得的值,即可求得數(shù)列的通項公式;(2)由等比數(shù)列的求和公式求得,得到,,化簡得到,即可求解【小問1詳解】解:設(shè)等比數(shù)列的公比為,因為,所以,解得,所以,所以數(shù)列的通項公式【小問2詳解】解:由(1)可得,,,所以,所以,即,,成等差數(shù)列19、(1)證明見解析;(2)【解析】(1)易得,再由勾股定理逆定理證明,即可得線面垂直;(2)根據(jù)(1)得,進(jìn)而根據(jù)幾何關(guān)系,利用等體積法求解即可.【詳解】解:(1)連接,∵,是中點,∴,,又,,∴,∴,∵,∴,∴,,平面,∴平面;(2)∵點在棱上,且,,為的中點.∴,∴由余弦定理得,即,∴,由(1)平面,設(shè)點到平面的距離為∴,即,解得:所以點到平面的距離為.20、(1)線段的垂直平分線過定點(2)【解析】(1)設(shè)切線的方程為,并與拋物線方程聯(lián)立,利用判別式求得點坐標(biāo),進(jìn)而求得點坐標(biāo),從而求得線段的垂直平分線的方程,進(jìn)而求得定點坐標(biāo).(2)結(jié)合弦長公式求得的面積,利用基本不等式求得的最小值.【小問1詳解】依題意可知切線的斜率存在,且斜率大于.設(shè)直線PQ的方程為,.由消去并化簡得,由得,,則,解得,所以,在中,令得,所以,PQ中點為,所以線段PQ的中垂線方程為,即,所以線段的垂直平分線過定點.【小問2詳解】由(1)可知,直線PM的方程為,即.由消去并化簡得:,所以,而,所以得,,,.所以的面積,所以.當(dāng)且僅當(dāng)時等號成立.所以的最小值為.21、(1)證明見解析(2)存在,點E為線段中點【解析】(1)通過作輔助線結(jié)合面面垂直的性質(zhì)證明側(cè)面,從而證明結(jié)論;(2)建立空間直角坐標(biāo)系,求出相關(guān)點的坐標(biāo),再求相關(guān)的向量坐標(biāo),求平面的法向量,利用向量的夾角公式求得答案.【小問1詳解】證明:連接交于點,因,則由平面?zhèn)让?,且平面?zhèn)让?,得平面,又平面,所以三棱柱是直三棱柱,則底面ABC,所以.又,從而側(cè)面,又側(cè)面,故.【小問2詳解】由(1).平面,則直線與平面所成的角,所以,又,所以假設(shè)在線段上是否存在一點E,使得二面角的大小為,由是直三棱柱,所以以點A為原點,以AC、所在直線分別為x,z軸,以過A點和AC垂直的直線為y軸,建立空間直角坐標(biāo)系,如圖所示,則,且設(shè),,得所以,設(shè)平面的一個法向量,由,得:,取,由(1)知平面,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年軟件外包服務(wù)流程規(guī)范
- 被告還錢了申請書
- 河南失業(yè)補助金申請書
- 嬰兒餐椅行業(yè)代理申請書
- 2025年美容美發(fā)服務(wù)流程與標(biāo)準(zhǔn)操作手冊
- 退休干部遷回申請書
- 搭建小型犬舍的申請書
- 高中生退出社團(tuán)申請書
- 2026年工程結(jié)構(gòu)非線性分析中的風(fēng)險評估
- 高三請長假申請書
- GB/T 4074.2-2024繞組線試驗方法第2部分:尺寸測量
- 生物必修一-高中生物課件
- 小交通量農(nóng)村公路工程技術(shù)標(biāo)準(zhǔn)JTG 3311-2021
- 現(xiàn)代紡紗技術(shù)課件ppt 新型紡紗技術(shù)
- 環(huán)球雅思雅思封閉VIP保爭分人班協(xié)議合同書
- 中國傳統(tǒng)文化ppt
- 2023-2024學(xué)年江西省九江市小學(xué)語文五年級上冊期末深度自測預(yù)測題
- JJF 1129-2005尿液分析儀校準(zhǔn)規(guī)范
- 八年級數(shù)學(xué):菱形-菱形的性質(zhì)課件
- 人力資源統(tǒng)計學(xué)(第二版)新課件頁
- 某辦公樓室內(nèi)裝飾工程施工設(shè)計方案
評論
0/150
提交評論