湖北省宜昌市秭歸縣二中2026屆高二上數(shù)學(xué)期末教學(xué)質(zhì)量檢測試題含解析_第1頁
湖北省宜昌市秭歸縣二中2026屆高二上數(shù)學(xué)期末教學(xué)質(zhì)量檢測試題含解析_第2頁
湖北省宜昌市秭歸縣二中2026屆高二上數(shù)學(xué)期末教學(xué)質(zhì)量檢測試題含解析_第3頁
湖北省宜昌市秭歸縣二中2026屆高二上數(shù)學(xué)期末教學(xué)質(zhì)量檢測試題含解析_第4頁
湖北省宜昌市秭歸縣二中2026屆高二上數(shù)學(xué)期末教學(xué)質(zhì)量檢測試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

湖北省宜昌市秭歸縣二中2026屆高二上數(shù)學(xué)期末教學(xué)質(zhì)量檢測試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若數(shù)列1,a,b,c,9是等比數(shù)列,則實數(shù)b的值為()A.5 B.C.3 D.3或2.設(shè)P是雙曲線上的點,若,是雙曲線的兩個焦點,則()A.4 B.5C.8 D.103.已知命題:;:若,則,則下列判斷正確的是()A.為真,為真,為假 B.為真,為假,為真C.為假,為假,為假 D.為真,為假,為假4.閱讀如圖所示程序框圖,運(yùn)行相應(yīng)的程序,輸出S的結(jié)果是()A.128 B.64C.16 D.325.拋物線的焦點到直線的距離()A. B.C.1 D.26.已知實數(shù),滿足,則的最大值為()A. B.C. D.7.在區(qū)間內(nèi)隨機(jī)取一個數(shù)則該數(shù)滿足的概率為()A. B.C. D.8.已知雙曲線的焦點在y軸上,且實半軸長為4,虛半軸長為5,則雙曲線的標(biāo)準(zhǔn)方程為()A.=1 B.=1C.=1 D.=19.已知函數(shù)的定義域為,若,則()A. B.C. D.10.直線l的方向向量為,且l過點,則點到l的距離為()A B.C. D.11.已知復(fù)數(shù)滿足(其中為虛數(shù)單位),則復(fù)數(shù)的虛部為()A. B.C. D.12.南宋數(shù)學(xué)家楊輝在《詳解九章算法》和《算法通變本末》中,提出了一些新的垛積公式,他所討論的高階等差數(shù)列與一般等差數(shù)列不同,前后兩項之差并不相等,而是逐項差數(shù)之差或者高次差相等.對這類高階等差數(shù)列的研究,在楊輝之后一般稱為“垛積術(shù)”.現(xiàn)有一個高階等差數(shù)列,其前7項分別為1,5,11,21,37,61,95,則該數(shù)列的第7項為()A.101 B.99C.95 D.91二、填空題:本題共4小題,每小題5分,共20分。13.某企業(yè)有4個分廠,新培訓(xùn)了一批6名技術(shù)人員,將這6名技術(shù)人員分配到各分廠,要求每個分廠至少1人,則不同的分配方案種數(shù)為________.14.平行六面體中,底面是邊長為1的正方形,,則對角線的長度為___.15.如圖,在三棱錐中,,二面角的余弦值為,若三棱錐的體積為,則三棱錐外接球的表面積為______16.設(shè),滿足約束條件,則的最大值是_________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖①,直角梯形中,,,點,分別在,上,,,將四邊形沿折起,使得點,分別到達(dá)點,的位置,如圖②,平面平面,.(1)求證:平面平面;(2)求二面角的余弦值.18.(12分)已知橢圓的焦距為4,點在G上.(1)求橢圓G方程;(2)過橢圓G右焦點的直線l與橢圓G交于M,N兩點,O為坐標(biāo)原點,若,求直線l的方程.19.(12分)已知橢圓的離心率為,以橢圓兩個焦點與短軸的一個端點為頂點構(gòu)成的三角形的面積為(1)求橢圓C的標(biāo)準(zhǔn)方程;(2)過點作直線l與橢圓C相切于點Q,且直線l斜率大于0,過線段PQ的中點R作直線交橢圓于A,B兩點(點A,B不在y軸上),連結(jié)PA,PB,分別與橢圓交于點M,N,試判斷直線MN的斜率是否為定值;若是,請求出該定值20.(12分)已知橢圓,四點中,恰有三點在橢圓上(1)求橢圓的方程;(2)設(shè)直線不經(jīng)過點,且與橢圓相交于不同的兩點.若直線與直線的斜率之和為,證明:直線過一定點,并求此定點坐標(biāo)21.(12分)已知命題p:,命題q:.(1)若命題p為真命題,求實數(shù)x的取值范圍.(2)若p是q的充分條件,求實數(shù)m的取值范圍;22.(10分)已知數(shù)列是正項數(shù)列,,且.(1)求數(shù)列的通項公式;(2)設(shè),數(shù)列的前項和為,若對恒成立,求實數(shù)的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】根據(jù)等比數(shù)列的定義,利用等比數(shù)列的通項公式求解【詳解】解:設(shè)該等比數(shù)列公比為q,∵數(shù)列1,a,b,c,9是等比數(shù)列,∴,,∴,故,解得,∴故選:C2、C【解析】根據(jù)雙曲線的定義可得:,結(jié)合雙曲線的方程可得答案.【詳解】由雙曲線可得根據(jù)雙曲線的定義可得:故選:C3、D【解析】先判斷出命題,的真假,即可判斷.【詳解】因為成立,所以命題為真,由可得或,所以命題為假命題,所以為真,為假,為假.故選:D.4、C【解析】根據(jù)程序框圖的循環(huán)邏輯寫出執(zhí)行步驟,即可確定輸出結(jié)果.【詳解】根據(jù)流程圖的執(zhí)行邏輯,其執(zhí)行步驟如下:1、成立,則;2、成立,則;3、成立,則;4、成立,則;5、不成立,輸出;故選:C5、B【解析】由拋物線可得焦點坐標(biāo),結(jié)合點到直線的距離公式,即可求解.【詳解】由拋物線可得焦點坐標(biāo)為,根據(jù)點到直線的距離公式,可得,即拋物線的焦點到直線的距離為.故選:B.6、A【解析】畫出不等式組所表示的平面區(qū)域,利用直線的斜率公式模型進(jìn)行求解即可.【詳解】不等式組表示的平面區(qū)域如下圖所示:,代數(shù)式表示不等式組所表示的平面區(qū)域內(nèi)的點與點連線的斜率,由圖象可知:直線的斜率最大,由,即,即的最大值為:,因此的最大值為,故選:A7、C【解析】求解不等式,利用幾何概型的概率計算公式即可容易求得.【詳解】求解不等式可得:,由幾何概型的概率計算公式可得:在區(qū)間內(nèi)隨機(jī)取一個數(shù)則該數(shù)滿足的概率為.故選:.8、D【解析】根據(jù)雙曲線的性質(zhì)求解即可.【詳解】雙曲線的焦點在y軸上,且實半軸長為4,虛半軸長為5,可得a=4,b=5,所以雙曲線方程為:=1.故選:D.9、D【解析】利用導(dǎo)數(shù)的定義可求得的值.【詳解】由導(dǎo)數(shù)的定義可得.故選:D.10、C【解析】利用向量投影和勾股定理即可計算.【詳解】∵,∴又,∴在方向上的投影,∴P到l距離故選:C.11、A【解析】由題目條件可得,即,然后利用復(fù)數(shù)的運(yùn)算法則化簡.【詳解】因為,所以,則故復(fù)數(shù)的虛部為.故選:A.【點睛】本題考查復(fù)數(shù)的相關(guān)概念及復(fù)數(shù)的乘除運(yùn)算,按照復(fù)數(shù)的運(yùn)算法則化簡計算即可,較簡單.12、C【解析】根據(jù)所給數(shù)列找到規(guī)律:兩次后項減前項所得數(shù)列為公差為2的數(shù)列,進(jìn)而反向確定原數(shù)列的第7項.【詳解】根據(jù)所給定義,用數(shù)列的后一項減去前一項得到一個數(shù)列,得到的數(shù)列也用后一項減去前一項得到一個數(shù)列,即得到了一個等差數(shù)列,如圖:故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、1560【解析】先把6名技術(shù)人員分成4組,每組至少一人,有兩種情況:(1)4個組的人數(shù)按3,1,1,1分配,(2)4個組的人數(shù)為2,2,1,1,求出所有的分組方法,然后再把4個組的人分給4個分廠,從而可求得答案【詳解】先把6名技術(shù)人員分成4組,每組至少一人.(1)若4個組的人數(shù)按3,1,1,1分配,則不同的分配方案有(種).(2)若4個組的人數(shù)為2,2,1,1,則不同的分配方案有(種).故所有分組方法共有20+45=65(種).再把4個組的人分給4個分廠,不同的方法有(種).故答案為:156014、2【解析】利用,兩邊平方后,利用向量數(shù)量積計算公式,計算得.【詳解】對兩邊平方并化簡得,故.【點睛】本小題主要考查空間向量的加法和減法運(yùn)算,考查空間向量數(shù)量積的表示,屬于中檔題.15、【解析】取的中點,連接,,過點A作,垂足為,設(shè),利用三角形的邊角關(guān)系求出,利用錐體的體積公式求出的值,確定三棱錐外接球的球心,求解外接球的半徑,由表面積公式求解即可【詳解】取的中點,連接,,過點A作,交DE的延長線于點,所以為二面角的平面角,設(shè),則,,所以,所以,EH=,因為三棱錐的體積為,所以,解得:,,設(shè)外接圓的圓心為,三棱錐外接球的球心為,連接,,,過點O作OF⊥AH于點F,則,,,,設(shè),則,,由勾股定理得:,解得:,所以三棱錐外接球的半徑滿足,則三棱錐的外接球的表面積為故答案為:【點睛】本題考查了幾何體的外接球問題,棱錐的體積公式的理解與應(yīng)用,解題的關(guān)鍵是確定外接球球心的位置,三棱錐的外接球的球心在過各面外心且與此面垂直的直線上,由此結(jié)論可以找到外接球的球心,16、5【解析】由題可知表示點與點連線的斜率,再畫出可行域結(jié)合圖像知知.【詳解】x,y滿足約束條件,滿足的可行域如圖:則的幾何意義是可行域內(nèi)的點與(﹣3,﹣2)連線的斜率,通過分析圖像得到當(dāng)經(jīng)過A時,目標(biāo)函數(shù)取得最大值由可得A(﹣2,3),則的最大值是:故答案為5【點睛】(1)在平面直角坐標(biāo)系內(nèi)作出可行域(2)考慮目標(biāo)函數(shù)的幾何意義,將目標(biāo)函數(shù)進(jìn)行變形.常見的類型有截距型(型)、斜率型(型)和距離型(型)(3)確定最優(yōu)解:根據(jù)目標(biāo)函數(shù)的類型,并結(jié)合可行域確定最優(yōu)解(4)求最值:將最優(yōu)解代入目標(biāo)函數(shù)即可求出最大值或最小值三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)【解析】(1)根據(jù),,,,易證,再根據(jù)平面平面,,得到平面,進(jìn)而得到,再利用線面垂直的判定定理證明平面即可;(2)根據(jù)(1)知,,兩兩垂直,以,,的方向分別為,,軸的正方向建立空間直角坐標(biāo)系,分別求得平面的一個法向量和平面的一個法向量,設(shè)二面角的大小為,由求解.【小問1詳解】解:因為,,,所以,,又,所以是等腰直角三角形,即,所以.由平面幾何知識易知,所以,即.又平面平面,平面平面,,所以平面,又平面,所以.又,所以平面,又平面,所以平面平面.【小問2詳解】由(1)知,,兩兩垂直,以,,的方向分別為,,軸的正方向,建立如圖所示的空間直角坐標(biāo)系,設(shè),則,,,,F(xiàn)(1,0,0),則,,設(shè)平面的一個法向量為,由,得,取,則.由,,,得平面,所以平面的一個法向量為,設(shè)二面角的大小為,則,由圖可知二面角為鈍二面角,所以二面角的余弦值為.18、(1);(2).【解析】(1)根據(jù)已知求出即得橢圓的方程;(2)設(shè)l的方程為,,,聯(lián)立直線和橢圓的方程得到韋達(dá)定理,根據(jù)得到,即得直線l的方程.【小問1詳解】解:橢圓的焦距是4,所以焦點坐標(biāo)是,.因為點在G上,所以,所以,.所以橢圓G的方程是.【小問2詳解】解:顯然直線l不垂直于x軸,可設(shè)l的方程為,,,將直線l的方程代入橢圓G的方程,得,則,.因為,所以,則,即,由,得,.所以,解得,即,所以直線l的方程為.19、(1)(2)是,【解析】(1)根據(jù)離心率以及橢圓兩個焦點與短軸的一個端點為頂點構(gòu)成的三角形的面積列出等式即可求解;(2)設(shè)出相關(guān)直線與相關(guān)點的坐標(biāo),直線與橢圓聯(lián)立,點的坐標(biāo)配合斜率公式化簡,再運(yùn)用韋達(dá)理化簡可證明.【小問1詳解】由題意得,解得,則橢圓C的標(biāo)準(zhǔn)方程為【小問2詳解】設(shè)切線PQ的方程為,,,,,由,消去y得①,則,解得或(舍去),將代入①得,,解得,則,所以,又R為PQ中點,則,因為PA,PB斜率都存在,不妨設(shè),,由①可得,所以,,同理,,則,又R,A,B三點共線,則,化簡得,所以.20、(1)(2)證明見解析,定點【解析】(1)先判斷出在橢圓上,再代入求橢圓方程;(2)假設(shè)斜率存在,設(shè)出直線,利用斜率之和為,求出之間的關(guān)系,即可求出定點,再說明斜率不存在時,直線仍過該點即可.【小問1詳解】由對稱性同時在橢圓上或同時不在橢圓上,從而在橢圓上,因此不在橢圓上,故在橢圓上,將,代入橢圓的方程,解得,所以橢圓的方程為【小問2詳解】當(dāng)直線斜率存在時,令方程為,由得所以得方程為,過定點當(dāng)直線斜率不存在時,令方程為,由,即解得此時直線方程為,也過點綜上,直線過定點.【點睛】本題關(guān)鍵點在于先假設(shè)斜率存在,設(shè)出直線,利用題目所給條件得到之間的關(guān)系,即可求出定點,再說明斜率不存在時,直線仍過該點即可,屬于定點問題的常見解法,注意積累掌握.21、(1);(2).【解析】(1)由一元二次不等式的解法求得的范圍;

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論