貴陽市第二實(shí)驗(yàn)中學(xué)2026屆數(shù)學(xué)高二上期末經(jīng)典試題含解析_第1頁
貴陽市第二實(shí)驗(yàn)中學(xué)2026屆數(shù)學(xué)高二上期末經(jīng)典試題含解析_第2頁
貴陽市第二實(shí)驗(yàn)中學(xué)2026屆數(shù)學(xué)高二上期末經(jīng)典試題含解析_第3頁
貴陽市第二實(shí)驗(yàn)中學(xué)2026屆數(shù)學(xué)高二上期末經(jīng)典試題含解析_第4頁
貴陽市第二實(shí)驗(yàn)中學(xué)2026屆數(shù)學(xué)高二上期末經(jīng)典試題含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

貴陽市第二實(shí)驗(yàn)中學(xué)2026屆數(shù)學(xué)高二上期末經(jīng)典試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.在正方體中,為棱的中點(diǎn),則異面直線與所成角的正切值為A. B.C. D.2.已知點(diǎn),,若直線過點(diǎn)且與線段相交,則直線的斜率的取值范圍是()A. B.C. D.3.?dāng)?shù)學(xué)家歌拉在1765年提出定理:三角形的外心、重心、垂心依次位于同一直線上,且重心到外心的距離是重心到垂心距離的一半.這條直線被后人稱為三角形的歐拉線.已知的三個頂點(diǎn)分別為,,,則的歐拉線方程是()A. B.C. D.4.已知橢圓的兩焦點(diǎn)分別為,,P為橢圓上一點(diǎn),且,則的面積等于()A.6 B.C. D.5.在某市第一次全民核酸檢測中,某中學(xué)派出了8名青年教師參與志愿者活動,分別派往2個核酸檢測點(diǎn),每個檢測點(diǎn)需4名志愿者,其中志愿者甲與乙要求在同一組,志愿者丙與丁也要求在同一組,則這8名志愿者派遣方法種數(shù)為()A.20 B.14C.12 D.66.已知點(diǎn)是雙曲線的左、右焦點(diǎn),以線段為直徑的圓與雙曲線在第一象限的交點(diǎn)為,若,則()A.與雙曲線的實(shí)軸長相等B.的面積為C.雙曲線的離心率為D.直線是雙曲線的一條漸近線7.平行六面體中,若,則()A. B.1C. D.8.正數(shù)a,b滿足,若不等式對任意實(shí)數(shù)x恒成立,則實(shí)數(shù)m的取值范圍是A. B.C. D.9.在等差數(shù)列中,,,則公差A(yù).1 B.2C.3 D.410.如圖,已知直線AO垂直于平面,垂足為O,BC在平面內(nèi),AB與平面所成角的大小為,,,則異面直線AB與OC所成角的余弦值為()A. B.C. D.11.已知△的頂點(diǎn)B,C在橢圓上,頂點(diǎn)A是橢圓的一個焦點(diǎn),且橢圓的另一個焦點(diǎn)在BC邊上,則△的周長是()A. B.C.8 D.1612.已知命題,,則()A., B.,C., D.,二、填空題:本題共4小題,每小題5分,共20分。13.寫出一個離心率且焦點(diǎn)在軸上的雙曲線的標(biāo)準(zhǔn)方程________,并寫出該雙曲線的漸近線方程________14.若平面法向量,直線的方向向量為,則與所成角的大小為___________.15.已知球的表面積為,則該球的體積為______.16.已知正方形的邊長為2,對部分以為軸進(jìn)行翻折,翻折到,使二面角的平面角為直二面角,則___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖所示,四棱錐的底面為直角梯形,,,,,底面,為的中點(diǎn)(1)求證:平面平面;(2)求點(diǎn)到平面的距離18.(12分)已知{an}是公差不為零的等差數(shù)列,a1=1,且a1,a3,a9成等比數(shù)列.(Ⅰ)求數(shù)列{an}的通項(xiàng);(Ⅱ)求數(shù)列的前n項(xiàng)和Sn.19.(12分)如圖1,在邊長為2的菱形ABCD中,∠BAD=60°,將△BCD沿對角線BD折起到△BDC′的位置,如圖2所示,并使得平面BDC′⊥平面ABD,E是BD的中點(diǎn),F(xiàn)A⊥平面ABD,且FA=.圖1圖2(1)求平面FBC′與平面FBA夾角的余弦值;(2)在線段AD上是否存在一點(diǎn)M,使得⊥平面?若存在,求的值;若不存在,說明理由.20.(12分)在直三棱柱中,,,,,分別是,上的點(diǎn),且(1)求證:∥平面;(2)求平面與平面所成銳二面角的余弦值21.(12分)如圖,直角梯形與等腰直角三角形所在的平面互相垂直,,,.(1)求點(diǎn)C到平面的距離;(2)線段上是否存在點(diǎn)F,使與平面所成角正弦值為,若存在,求出,若不存在,說明理由.22.(10分)在①;②;③;這三個條件中任選一個,補(bǔ)充在下面的問題中,然后解答補(bǔ)充完整的題.注:若選擇多個條件分別解答,則按第一個解答計分.已知,且(只需填序號).(1)求的值;(2)求展開式中的奇數(shù)次冪的項(xiàng)的系數(shù)之和

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】利用正方體中,,將問題轉(zhuǎn)化為求共面直線與所成角的正切值,在中進(jìn)行計算即可.【詳解】在正方體中,,所以異面直線與所成角為,設(shè)正方體邊長為,則由為棱的中點(diǎn),可得,所以,則.故選C.【點(diǎn)睛】求異面直線所成角主要有以下兩種方法:(1)幾何法:①平移兩直線中的一條或兩條,到一個平面中;②利用邊角關(guān)系,找到(或構(gòu)造)所求角所在的三角形;③求出三邊或三邊比例關(guān)系,用余弦定理求角;(2)向量法:①求兩直線的方向向量;②求兩向量夾角的余弦;③因?yàn)橹本€夾角為銳角,所以②對應(yīng)的余弦取絕對值即為直線所成角的余弦值.2、B【解析】直接利用兩點(diǎn)間的坐標(biāo)公式和直線的斜率的關(guān)系求出結(jié)果【詳解】解:直線過點(diǎn)且斜率為,與連接兩點(diǎn),的線段有公共點(diǎn),由圖,可知,,當(dāng)時,直線與線段有交點(diǎn)故選:B3、B【解析】根據(jù)的三個頂點(diǎn)坐標(biāo),先求解出重心的坐標(biāo),然后再根據(jù)三個點(diǎn)坐標(biāo)求解任意兩條垂直平分線的方程,聯(lián)立方程,即可算出外心的坐標(biāo),最后根據(jù)重心和外心的坐標(biāo)使用點(diǎn)斜式寫出直線方程.【詳解】由題意可得的重心為.因?yàn)?,,所以線段的垂直平分線的方程為.因?yàn)?,,所以直線的斜率,線段的中點(diǎn)坐標(biāo)為,則線段的垂直平分線的方程為.聯(lián)立,解得,則的外心坐標(biāo)為,故的歐拉線方程是,即故選:B.4、B【解析】根據(jù)橢圓定義和余弦定理解得,結(jié)合三解形面積公式即可求解【詳解】由與是橢圓上一點(diǎn),∴,兩邊平方可得,即,由于,,∴根據(jù)余弦定理可得,綜上可解得,∴的面積等于,故選:B5、B【解析】分(甲乙)、(丙?。┰偻唤M和不在同一組兩種情況討論,按照分類、分步計數(shù)原理計算可得;【詳解】解:依題意甲乙丙丁四人再同一組,有種;(甲乙),(丙?。┎辉谕唤M,先從其余4人選2人與甲乙作為一組,另外2人與丙丁作為一組,再安排到兩個核酸檢測點(diǎn),則有種,綜上可得一共有種安排方法,故選:B6、B【解析】由題意及雙曲線的定義可得,的值,進(jìn)而可得A不正確,計算可判斷B正確,再求出,的關(guān)系可得C不正確,求出,的關(guān)系,進(jìn)而求出漸近線的方程,可得D不正確【詳解】因?yàn)椋钟深}意及雙曲線的定義可得:,則,,所以A不正確;因?yàn)樵谝詾橹睆降膱A上,所以,所以,所以B正確;在△中,由勾股定理可得,即,所以離心率,所以C不正確;由C的分析可知:,故,所以漸近線的方程為,即,所以D不正確;故選:B7、D【解析】根據(jù)空間向量的運(yùn)算,表示出,和已知比較可求得的值,進(jìn)而求得答案.【詳解】在平行六面體中,有,故由題意可知:,即,所以,故選:D.8、A【解析】利用基本不等式求得的最小值,把問題轉(zhuǎn)化為恒成立的類型,求解的最大值即可.【詳解】,,且a,b為正數(shù),,當(dāng)且僅當(dāng),即時,,若不等式對任意實(shí)數(shù)x恒成立,則對任意實(shí)數(shù)x恒成立,即對任意實(shí)數(shù)x恒成立,,,故選:A【點(diǎn)睛】本題主要考查了恒成立問題,基本不等式求最值,二次函數(shù)求最值,屬于中檔題.9、B【解析】由,將轉(zhuǎn)化為表示,結(jié)合,即可求解.【詳解】,.故選:B.【點(diǎn)睛】本題考查等差數(shù)列基本量的計算,屬于基礎(chǔ)題.10、B【解析】建立空間直角坐標(biāo)系,求出相關(guān)點(diǎn)的坐標(biāo),求出向量的坐標(biāo),再利用向量的夾角公式計算即可.【詳解】如圖,以O(shè)為坐標(biāo)原點(diǎn),過點(diǎn)O作OB的垂線為x軸,OB為y軸,OA為z軸,建立空間直角坐標(biāo)系,設(shè),則,,則,,,,,設(shè)的夾角為,則,所以異面直線AB與OC所成角的余弦值為,故選:B.11、D【解析】根據(jù)橢圓定義求解【詳解】由橢圓定義得△的周長是,故選:D.12、C【解析】利用全稱量詞命題的否定可得出結(jié)論.【詳解】命題為全稱量詞命題,該命題的否定為,.故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、①.(答案不唯一)②.(答案不唯一)【解析】令雙曲線為,根據(jù)離心率可得,結(jié)合雙曲線參數(shù)關(guān)系寫出一個符合要求的雙曲線方程,進(jìn)而寫出對應(yīng)的漸近線方程.【詳解】由題設(shè),可令雙曲線為且,∴,則,故為其中一個標(biāo)準(zhǔn)方程,此時漸近線方程為.故答案為:,(答案不唯一).14、##【解析】設(shè)直線與平面所成角為,則,直接利用直線與平面所成的角的向量計算公式,即可求出直線與平面所成的角【詳解】解:已知直線的方向向量為,平面的法向量為,設(shè)直線與平面所成角為,則,,,所以直線與平面所成角為.故答案為:.15、【解析】設(shè)球半徑為,由球表面積求出,然后可得球的體積【詳解】設(shè)球半徑為,∵球的表面積為,∴,∴,∴該球的體積為故答案為【點(diǎn)睛】解答本題的關(guān)鍵是熟記球的表面積和體積公式,解題時由條件求得球的半徑后可得所求結(jié)果16、-2【解析】根據(jù),則,根據(jù)條件求得向量夾角即可求得結(jié)果.【詳解】由題知,,取的中點(diǎn)O,連接,如圖所示,則,又二面角的平面角為直二面角,則,又,則,為等邊三角形,從而,則,故答案為:-2三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)【解析】(1)設(shè)與交點(diǎn)為,延長交的延長線于點(diǎn),進(jìn)而根據(jù)證明,再結(jié)合底面得,進(jìn)而證明平面即可證明結(jié)論;(2)由得點(diǎn)到平面的距離等于點(diǎn)到平面的距離的,進(jìn)而過作,垂足為,結(jié)合(1)得點(diǎn)到平面的距離等于,再在中根據(jù)等面積法求解即可.【小問1詳解】證明:設(shè)與交點(diǎn)為,延長交的延長線于點(diǎn),因?yàn)樗睦忮F的底面為直角梯形,,所以,所以,因?yàn)闉榈闹悬c(diǎn),所以,因?yàn)樗裕?,所以,所以,又因?yàn)?,所以,又因?yàn)?,所以,所以,所以又因?yàn)榈酌妫?,因?yàn)?,所以平面,因?yàn)槠矫妫云矫嫫矫妗拘?詳解】解:由于,所以,點(diǎn)到平面的距離等于點(diǎn)到平面的距離的,因?yàn)槠矫嫫矫?,平面平面故過作,垂足為,所以,平面,所以點(diǎn)到平面的距離等于在中,,所以,點(diǎn)到平面的距離等于.18、(Ⅰ)(Ⅱ)【解析】本試題考查了等差數(shù)列與等比數(shù)列的概念以及等比數(shù)列的前n項(xiàng)和公式等基本知識(Ⅰ)由題設(shè)知公差由成等比數(shù)列得解得(舍去),故的通項(xiàng)(Ⅱ)由(Ⅰ)知,由等比數(shù)列前n項(xiàng)和公式得點(diǎn)評:本試題題目條件給的比較清晰,直接.只要抓住概念就可以很好的解決19、(1)(2)不存在,理由見解析【解析】(1)利用垂直關(guān)系,以點(diǎn)為原點(diǎn),建立空間直角坐標(biāo)系,分別求平面和平面的法向量和,利用公式,即可求解;(2)若滿足條件,,利用向量的坐標(biāo)表示,判斷是否存在點(diǎn)滿足.【小問1詳解】∵,E為BD的中點(diǎn)∴CE⊥BD,又∵平面⊥平面ABD,平面平面,⊥平面,∴⊥平面ABD,如圖以E原點(diǎn),分別以EB、AE、EC′所在直線為x軸、y軸、z軸建立空間直角坐標(biāo)系,則B(1,0,0),A(0,-,0),D(-1,0,0),F(xiàn)(0,-,2),(0,0,),∴=(-1,-,2),=(-1,0,),=(1,,0),設(shè)平面的法向量為=(x,y,z),則,取z=1,得平面的一個法向量=(,1,1),設(shè)平面FBA的法向量為=(a,b,c),則取b=1,得平面FBA的一個法向量為=(-,1,0),∴設(shè)平面ABD與平面的夾角為θ,則∴平面ABD與平面夾角的余弦值為.【小問2詳解】假設(shè)在線段AD上存在M(x,y,z),使得平面,設(shè)(0≤λ≤1),則(x,y+,z)=(-1,,0),即(x,y+,z)=(-λ,,0),∴,,z=0,∴,是平面的一個法向量由∥,得,此方程無解.∴線段AD上不存點(diǎn)M,使得平面.20、(1)證明見解析(2)【解析】(1)建立空間直角坐標(biāo)系,由空間向量證明與平面的法向量垂直(2)由空間向量求解【小問1詳解】以C為原點(diǎn),分別為軸建立空間直角坐標(biāo)系,如圖,則,,,,,,設(shè),因?yàn)?,所以,故,得,同理求得,所以,因?yàn)槭瞧矫娴囊粋€法向量,且,所以,又平面,所以平面;【小問2詳解】由(1)可得:,,設(shè)平面的一個法向量為,則,即令,則,所以,又平面的一個法向量為,設(shè)表示平面與平面所成銳二面角,則21、(1)(2)存在,1【解析】(1)由題意建立空間直角坐標(biāo)系,求得平面向量的法向量和相應(yīng)點(diǎn)的坐標(biāo),利用點(diǎn)面距離公式即可求得點(diǎn)面距離(2)假設(shè)滿足題意的點(diǎn)存在且滿足,由題意得到關(guān)于的方程,解方程即可確定滿足題意的點(diǎn)是否存在【小問1詳解】解:如圖所示,取中點(diǎn),連結(jié),,因?yàn)槿切问堑妊苯侨切危?,因?yàn)槊婷?,面面面,所以平面,又因?yàn)?,所以四邊形是矩形,可得,則,建立如圖所示的空間直角坐標(biāo)系,則:據(jù)此可得,設(shè)平面的一個法向量為,則,令可得,從而,又,故求點(diǎn)到平面的距離【小問2詳解】解:假設(shè)存在點(diǎn),,滿足題意,點(diǎn)在線段上,則,即:,,,,,據(jù)此可得:,,從而,,,,設(shè)與平面所成角所成的角為,則,整理

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論