版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
云南省玉溪市民中2026屆高二上數(shù)學(xué)期末統(tǒng)考試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知分別是雙曲線的左、右焦點,動點P在雙曲線的左支上,點Q為圓上一動點,則的最小值為()A.6 B.7C. D.52.“”是“方程表示橢圓”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件3.已知雙曲線的離心率,點是拋物線上的一動點,到雙曲線的上焦點的距離與到直線的距離之和的最小值為,則該雙曲線的方程為A. B.C. D.4.已知橢圓的左,右兩個焦點分別為,若橢圓C上存在一點A,滿足,則橢圓C的離心率的取值范圍是()A. B.C. D.5.曲線在點處的切線方程是()A. B.C. D.6.四棱錐中,底面ABCD是平行四邊形,點E為棱PC的中點,若,則等于()A.1 B.C. D.27.如圖是等軸雙曲線形拱橋,現(xiàn)拱頂距離水面6米,水面寬米,若水面下降6米,則水面寬()A.米 B.米C.米 D.米8.?dāng)?shù)列,則是這個數(shù)列的第()A.項 B.項C.項 D.項9.方程表示的曲線是()A.一個橢圓和一條直線 B.一個橢圓和一條射線C.一條射線 D.一個橢圓10.若數(shù)列1,a,b,c,9是等比數(shù)列,則實數(shù)b的值為()A.5 B.C.3 D.3或11.過雙曲線的右頂點作斜率為的直線,該直線與雙曲線的兩條漸近線的交點分別為.若,則雙曲線的離心率是A. B.C. D.12.在空間直角坐標(biāo)系中,點關(guān)于軸對稱的點的坐標(biāo)為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.雙曲線的實軸長為______.14.斐波那契數(shù)列,又稱“兔子數(shù)列”,由數(shù)學(xué)家斐波那契研究兔子繁殖問題時引入.已知斐波那契數(shù)列滿足,,,若記,,則________.(用,表示)15.設(shè),為實數(shù),已知經(jīng)過點的橢圓與雙曲線有相同的焦點,則___________.16.若在數(shù)列的每相鄰兩項之間插入此兩項的和,可形成新的數(shù)列,再把所得數(shù)列按照同樣的方法不斷進行構(gòu)造,又可以得到新的數(shù)列.現(xiàn)將數(shù)列1,2進行構(gòu)造,第1次得到數(shù)列1,3,2;第2次得到數(shù)列1,4,3,5,2;依次構(gòu)造,第次得到數(shù)列1,,,,…,,2;記則______,設(shè)數(shù)列的前n項和為,則______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù)(1)求函數(shù)的單調(diào)遞減區(qū)間;(2)在中,角,,所對的邊分別為,,,且滿足,,求面積的最大值18.(12分)已知是公差不為零等差數(shù)列,,且、、成等比數(shù)列(1)求數(shù)列的通項公式:(2)設(shè).?dāng)?shù)列{}的前項和為,求證:19.(12分)已知函數(shù).(1)求函數(shù)f(x)的單調(diào)區(qū)間;(2)若f(x)≥0對定義域內(nèi)的任意x恒成立,求實數(shù)a的取值范圍.20.(12分)已知橢圓C:的左、右焦點分別為F1、F2,上頂點為A,△AF1F2的周長為6,離心率等于.(1)求橢圓C的標(biāo)準(zhǔn)方程;(2)過點(4,0)的直線l交橢圓C于M、N兩點,且OM⊥ON,求直線l的方程.21.(12分)如圖,在四棱錐S-ABCD中,SA⊥底面ABCD,底面ABCD是梯形,其中,且.(1)求四棱錐S-ABCD的側(cè)面積;(2)求平面SCD與平面SAB的夾角的余弦值.22.(10分)在平面直角坐標(biāo)系中,已知點.點M滿足.記M的軌跡為C.(1)求C的方程;(2)直線l經(jīng)過點,與軌跡C分別交于點M、N,與直線交于點Q,求證:.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】由雙曲線的定義及三角形的幾何性質(zhì)可求解.【詳解】如圖,圓的圓心為,半徑為1,,,當(dāng),,三點共線時,最小,最小值為,而,所以故選:A2、B【解析】方程表示橢圓,可得,解出的范圍即可判斷出結(jié)論.【詳解】∵方程表示橢圓,∴解得或,故“”是“方程表示橢圓”的必要不充分條件.故選:B3、B【解析】先根據(jù)離心率得,再根據(jù)拋物線定義得最小值為(為拋物線焦點),解得,即得結(jié)果.【詳解】因為雙曲線的離心率,所以,設(shè)為拋物線焦點,則,拋物線準(zhǔn)線方程為,因此到雙曲線的上焦點的距離與到直線的距離之和等于,因為,所以,即,即雙曲線的方程為,選B.【點睛】本題考查雙曲線方程、離心率以及拋物線定義,考查基本分析求解能力,屬中檔題.4、C【解析】根據(jù)題意可知當(dāng)A為橢圓的上下頂點時,即可滿足橢圓C上存在一點A,使得,由此可得,解此不等式可得答案.【詳解】由橢圓的對稱性可知,當(dāng)A為橢圓的上下頂點時,最大,故只需即可滿足題意,設(shè)O為坐標(biāo)原點,則只需,即有,所以,解得,故選:C5、B【解析】求導(dǎo),得到曲線在點處的斜率,寫出切線方程.【詳解】因為,所以曲線在點處斜率為4,所以曲線在點處的切線方程是,即,故選:B6、B【解析】運用向量的線性運用表示向量,對照系數(shù),求得,代入可得選項.【詳解】因為,所以,所以,所以,解得,所以,故選:B.7、B【解析】以雙曲線的對稱中心為原點,焦點所在對稱軸為y軸建立直角坐標(biāo)系,求出雙曲線方程,數(shù)形結(jié)合即可求解.【詳解】如圖所示,以雙曲線的對稱中心為原點,焦點所在對稱軸為y軸建立直角坐標(biāo)系,設(shè)雙曲線標(biāo)準(zhǔn)方程為:(a>0),則頂點,,將A點代入雙曲線方程得,,當(dāng)水面下降6米后,,代入雙曲線方程得,,∴水面寬:米.故選:B.8、A【解析】根據(jù)數(shù)列的規(guī)律,求出通項公式,進而求出是這個數(shù)列的第幾項【詳解】數(shù)列為,故通項公式為,是這個數(shù)列的第項.故選:A.9、A【解析】根據(jù)題意得到或,即可求解.【詳解】由方程,可得或,即或,所以方程表示的曲線為一個橢圓或一條直線.故選:A.10、C【解析】根據(jù)等比數(shù)列的定義,利用等比數(shù)列的通項公式求解【詳解】解:設(shè)該等比數(shù)列公比為q,∵數(shù)列1,a,b,c,9是等比數(shù)列,∴,,∴,故,解得,∴故選:C11、C【解析】直線l:y=-x+a與漸近線l1:bx-ay=0交于B,l與漸近線l2:bx+ay=0交于C,A(a,0),∴,∵,∴,b=2a,∴,∴,∴考點:直線與圓錐曲線的綜合問題;雙曲線的簡單性質(zhì)12、B【解析】結(jié)合已知條件,利用對稱的概念即可求解.【詳解】不妨設(shè)點關(guān)于軸對稱的點的坐標(biāo)為,則線段垂直于軸且的中點在軸,從而點關(guān)于軸對稱的點的坐標(biāo)為.故選:B.二、填空題:本題共4小題,每小題5分,共20分。13、4【解析】根據(jù)雙曲線標(biāo)準(zhǔn)方程的特征即可求解.【詳解】由題可知.故答案為:4.14、【解析】由已知兩式相加求得,得,得到,從而得到,,利用可得答案.【詳解】因為,由,,得,所以,得,因為,所以,,所以,,所以,.故答案為:.15、1【解析】由點P在橢圓上,可得的值,再根據(jù)橢圓與雙曲線有相同的焦點即可求解.【詳解】解:因為點在橢圓上,所以,解得,所以橢圓方程為,又橢圓與雙曲線有相同的焦點,所以,解得,故答案為:1.16、①.81②.【解析】根據(jù)數(shù)列的構(gòu)造寫出前面幾次得到的新數(shù)列,尋找規(guī)律,構(gòu)造等比數(shù)列,求出通項公式,再進行求和.【詳解】第1次得到數(shù)列1,3,2,此時;第2次得到數(shù)列1,4,3,5,2,此時;第3次得到數(shù)列1,5,4,7,3,8,5,7,2,此時;第4次得到數(shù)列1,6,5,9,4,11,7,10,3,11,8,13,5,12,7,9,2,此時,故81,且故,又,所以數(shù)列是以為首項,公比為3的等比數(shù)列,所以,故,所以故答案為:81,三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)由三角恒等變換公式化簡,根據(jù)三角函數(shù)性質(zhì)求解(2)由余弦定理與面積公式,結(jié)合基本不等式求解【小問1詳解】由己知可得,由,解得:,故的單調(diào)遞減區(qū)間是【小問2詳解】,,故,得,由余弦定理得:,得,當(dāng)且僅當(dāng)時等號成立,故,面積最大值為18、(1);(2)證明見解析.【解析】(1)設(shè)等差數(shù)列的公差為,則,根據(jù)題意可得出關(guān)于的方程,求出的值,利用等差數(shù)列的通項公式可求得數(shù)列的通項公式;(2)求得,利用裂項相消法求出,即可證得結(jié)論成立.【小問1詳解】解:設(shè)等差數(shù)列的公差為,則,由題意可得,即,整理可得,,解得,因此,.【小問2詳解】證明:,因此,,故原不等式得證.19、(1)答案見解析(2)【解析】(1)求導(dǎo)數(shù),然后對進行分類討論,利用導(dǎo)數(shù)的正負,可得函數(shù)的單調(diào)區(qū)間;(2)利用(1)中函數(shù)的單調(diào)性,求得函數(shù)在處取得最小值,即可求實數(shù)的取值范圍.【小問1詳解】解:求導(dǎo)可得①時,令可得,由于知;令,得∴函數(shù)在上單調(diào)遞減,在上單調(diào)遞增;②時,令可得;令,得或,由于知或;∴函數(shù)在上單調(diào)遞減,在上單調(diào)遞增;③時,,函數(shù)在上單調(diào)遞增;④時,令可得;令,得或,由于知或∴函數(shù)在上單調(diào)遞減,在上單調(diào)遞增;【小問2詳解】由(1)時,,(不符合,舍去)當(dāng)時,在上單調(diào)遞減,在上單調(diào)遞增,故函數(shù)在處取得最小值,所以函數(shù)對定義域內(nèi)的任意x恒成立時,只需要即可∴.綜上,.20、(1);(2)或.【解析】(1)由條件得,再結(jié)合,可求得橢圓方程;(2)由題意設(shè)直線l:x=my+4,設(shè)M(x1,y1),N(x2,y2),直線方程與橢圓方程聯(lián)立方程組,消去,整理后利用根與系的關(guān)系可得,,再由OM⊥ON,可得x1x2+y1y2=0,從而可列出關(guān)于的方程,進而可求出的值,即可得到直線的方程【詳解】(1)由條件知,解得,則故橢圓的方程為(2)顯然直線l的斜率存在,且斜率不為0,設(shè)直線l:x=my+4交橢圓C于M(x1,y1),N(x2,y2),由,當(dāng)=(24m)2-4(3m2+4)×36>0時,有,,由條件OM⊥ON可得,,即x1x2+y1y2=0,從而有(my1+4)(my2+4)+y1y2=0,(m2+1)y1y2+4m(y1+y2)+16=0,,解得,故且滿足>0從而直線l方程為或21、(1)(2)【解析】(1)根據(jù)垂直關(guān)系依次求解每個側(cè)面三角形邊長和面積即可得解;(2)建立空間直角坐標(biāo)系,利用向量法求解.小問1詳解】由題可得:,則,SA⊥底面ABCD,所以,SA平面SAB,平面SAB⊥底面ABCD,交線,所以BC⊥平面SAB,BC⊥BS,,所以四棱錐的側(cè)面積【小問2詳解】以A為原點,建立空間直角坐標(biāo)系如圖所示:設(shè)平面SCD的法向量,,取所以取為平面SAB的的法向量所以平面SCD與平面SAB的夾
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 小學(xué)二年級體育教學(xué)工作總結(jié)
- 2025數(shù)字化技術(shù)基礎(chǔ)繼續(xù)教育公需課試題及答案
- 三病母嬰傳播培訓(xùn)試題(附答案)
- 2025年基本公共衛(wèi)生服務(wù)居民健康檔案管理培訓(xùn)班試題(附答案)
- 建筑工程中級職稱評定個人工作總結(jié)
- 銀行客戶經(jīng)理2026年度工作總結(jié)
- 2025年企業(yè)社會責(zé)任培訓(xùn)考核要點試卷及答案
- 傳染病防控工作實施方案
- 醫(yī)務(wù)科2025年工作計劃
- 建設(shè)工程施工合同糾紛要素式起訴狀模板要素精準(zhǔn)無偏差
- 臨床成人失禁相關(guān)性皮炎的預(yù)防與護理團體標(biāo)準(zhǔn)解讀
- 創(chuàng)新創(chuàng)業(yè)教育學(xué)習(xí)通超星期末考試答案章節(jié)答案2024年
- 《最奇妙的蛋》完整版
- 三年級科學(xué)上冊蘇教版教學(xué)工作總結(jié)共3篇(蘇教版三年級科學(xué)上冊知識點整理)
- 種子室內(nèi)檢驗技術(shù)-種子純度鑒定(種子質(zhì)量檢測技術(shù)課件)
- SEMI S1-1107原版完整文檔
- 心電監(jiān)測技術(shù)操作考核評分標(biāo)準(zhǔn)
- 2023年中級財務(wù)會計各章作業(yè)練習(xí)題
- 金屬罐三片罐成型方法與罐型
- 大疆植保無人機考試試題及答案
- 《LED顯示屏基礎(chǔ)知識培訓(xùn)》
評論
0/150
提交評論