2026屆天津市寧河區(qū)蘆臺第一中學高一數(shù)學第一學期期末統(tǒng)考模擬試題含解析_第1頁
2026屆天津市寧河區(qū)蘆臺第一中學高一數(shù)學第一學期期末統(tǒng)考模擬試題含解析_第2頁
2026屆天津市寧河區(qū)蘆臺第一中學高一數(shù)學第一學期期末統(tǒng)考模擬試題含解析_第3頁
2026屆天津市寧河區(qū)蘆臺第一中學高一數(shù)學第一學期期末統(tǒng)考模擬試題含解析_第4頁
2026屆天津市寧河區(qū)蘆臺第一中學高一數(shù)學第一學期期末統(tǒng)考模擬試題含解析_第5頁
已閱讀5頁,還剩7頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2026屆天津市寧河區(qū)蘆臺第一中學高一數(shù)學第一學期期末統(tǒng)考模擬試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知,則的值是A.1 B.3C. D.2.將化為弧度為A. B.C. D.3.簡諧運動可用函數(shù)表示,則這個簡諧運動的初相為()A. B.C. D.4.設(shè)全集,集合,,則()A. B.C. D.5.如果,,那么()A. B.C. D.6.的值是A. B.C. D.7.直線與直線互相垂直,則這兩條直線的交點坐標為()A. B.C. D.8.若函數(shù)的圖象如圖所示,則下列函數(shù)與其圖象相符的是A. B.C. D.9.直線l:與圓C:的位置關(guān)系是A.相切 B.相離C.相交 D.不確定10.已知點M在曲線上,點N在曲線:上,則|MN|的最小值為()A.1 B.2C.3 D.4二、填空題:本大題共6小題,每小題5分,共30分。11.已知函數(shù)是定義在上的奇函數(shù),且當時,,則的值為__________12.已知集合,若,則_______.13.已知函數(shù)的零點為,不等式的最小整數(shù)解為,則__________14.已知函數(shù)滿足,則________.15.已知命題:,都有是真命題,則實數(shù)取值范圍是______16.如圖,在正六邊形ABCDEF中,記向量,,則向量______.(用,表示)三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.函數(shù)的定義域為D,若存在正實數(shù)k,對任意的,總有,則稱函數(shù)具有性質(zhì).(1)判斷下列函數(shù)是否具有性質(zhì),并說明理由.①;②;(2)已知為二次函數(shù),若存在正實數(shù)k,使得函數(shù)具有性質(zhì).求證:是偶函數(shù);(3)已知為給定的正實數(shù),若函數(shù)具有性質(zhì),求的取值范圍.18.(1)計算:;(2)化簡:19.已知函數(shù)(為常數(shù)),在時取得最大值2.(1)求的解析式;(2)求函數(shù)在上單調(diào)區(qū)間和最小值.20.已知函數(shù)(1)若,求實數(shù)a值;(2)若函數(shù)f(x)有兩個零點,求實數(shù)a的取值范圍21.設(shè)全集U=R,集合A={x|2x-1≥1},B={x|x2-4x-5<0}(Ⅰ)求A∩B,(?UA)∪(?UB);(Ⅱ)設(shè)集合C={x|m+1<x<2m-1},若B∩C=C,求實數(shù)m的取值范圍

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】由題意結(jié)合對數(shù)的運算法則確定的值即可.【詳解】由題意可得:,則本題選擇D選項.【點睛】本題主要考查指數(shù)對數(shù)互化,對數(shù)的運算法則等知識,意在考查學生的轉(zhuǎn)化能力和計算求解能力.2、D【解析】根據(jù)角度制與弧度制的關(guān)系求解.【詳解】因為,所以.故選:D.3、B【解析】根據(jù)初相定義直接可得.【詳解】由初相定義可知,當時的相位稱為初相,所以,函數(shù)的初相為.故選:B4、B【解析】先求出集合B,再根據(jù)交集補集定義即可求出.【詳解】,,,.故選:B.5、D【解析】根據(jù)不等式的性質(zhì),對四個選項進行判斷,從而得到答案.【詳解】因為,所以,故A錯誤;因為,當時,得,故B錯誤;因為,所以,故C錯誤;因為,所以,故D正確.故選:D.【點睛】本題考查不等式的性質(zhì),屬于簡單題.6、B【解析】利用誘導(dǎo)公式求解.【詳解】解:由誘導(dǎo)公式得,故選:B.7、B【解析】時,直線分別化為:,此時兩條直線不垂直.時,利用兩條直線垂直可得:,解得.聯(lián)立方程解出即可得出.【詳解】時,直線分別化為:,此時兩條直線不垂直.時,由兩條直線垂直可得:,解得.綜上可得:.聯(lián)立,解得,.∴這兩條直線的交點坐標為.故選:【點睛】本題考查了直線相互垂直、分類討論方法、方程的解法,考查了推理能力與計算能力,屬于基礎(chǔ)題.8、B【解析】由函數(shù)的圖象可知,函數(shù),則下圖中對于選項A,是減函數(shù),所以A錯誤;對于選項B,的圖象是正確的;對C,是減函數(shù),故C錯;對D,函數(shù)是減函數(shù),故D錯誤。故選B9、C【解析】利用點到直線的距離公式求出直線和圓的距離,即可作出判斷.【詳解】圓C:的圓心坐標為:,則圓心到直線的距離,所以圓心在直線l上,故直線與圓相交故選C【點睛】本題考查的知識要點:直線與圓的位置關(guān)系的應(yīng)用,點到直線的距離公式的應(yīng)用10、B【解析】根據(jù)圓的一般方程得出圓的標準方程,并且得圓的圓心和半徑,計算兩圓圓心的距離后就可以求解.【詳解】由題意知:圓:,的坐標是,半徑是,圓:,的坐標是,半徑是.所以,因此兩圓相離,所以最小值為.故選:B二、填空題:本大題共6小題,每小題5分,共30分。11、-1【解析】因為為奇函數(shù),故,故填.12、【解析】根據(jù)求得,由此求得.【詳解】由于,所以,所以.故答案為:13、8【解析】利用單調(diào)性和零點存在定理可知,由此確定的范圍,進而得到.【詳解】函數(shù)為上的增函數(shù),,,函數(shù)的零點滿足,,的最小整數(shù)解故答案為:.14、6【解析】由得出方程組,求出函數(shù)解析式即可.【詳解】因為函數(shù)滿足,所以,解之得,所以,所以.【點睛】本題主要考查求函數(shù)的值,屬于基礎(chǔ)題型.15、【解析】由于,都有,所以,從而可求出實數(shù)的取值范圍【詳解】解:因為命題:,都有是真命題,所以,即,解得,所以實數(shù)的取值范圍為,故答案為:16、##【解析】由正六邊形的性質(zhì):三條不相鄰的三邊經(jīng)過平移可成等邊三角形,即可得,進而得到結(jié)果.【詳解】由正六邊形的性質(zhì)知:,∴.故答案為:.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)具有性質(zhì);不具有性質(zhì);(2)見解析;(3)【解析】(1)根據(jù)定義即可求得具有性質(zhì);根據(jù)特殊值即可判斷不具有性質(zhì);(2)利用反證法,假設(shè)二次函數(shù)不是偶函數(shù),根據(jù)題意推出與題設(shè)矛盾即可證明;(3)根據(jù)題意得到,再根據(jù)具有性質(zhì),得到,解不等式即可.【詳解】解:(1),定義域為,則有,顯然存在正實數(shù),對任意的,總有,故具有性質(zhì);,定義域為,則,當時,,故不具有性質(zhì);(2)假設(shè)二次函數(shù)不是偶函數(shù),設(shè),其定義域為,即,則,易知,是無界函數(shù),故不存在正實數(shù)k,使得函數(shù)具有性質(zhì),與題設(shè)矛盾,故是偶函數(shù);(3)的定義域為,,具有性質(zhì),即存在正實數(shù)k,對任意的,總有,即,即,即,即,即,即,通過對比解得:,即.【點睛】方法點睛:應(yīng)用反證法時必須先否定結(jié)論,把結(jié)論的反面作為條件,且必須根據(jù)這一條件進行推理,否則,僅否定結(jié)論,不從結(jié)論的反面出發(fā)進行推理,就不是反證法.所謂矛盾主要指:①與已知條件矛盾;②與假設(shè)矛盾;③與定義、公理、定理矛盾;④與公認的簡單事實矛盾;⑤自相矛盾.18、(1);(2)【解析】(1)由題意利用對數(shù)的運算性質(zhì),計算求得結(jié)果(2)由題意利用誘導(dǎo)公式,計算求得結(jié)果【詳解】解:(1)(2)19、(1);(2)的單調(diào)增區(qū)間為,單調(diào)減區(qū)間為,.【解析】(1)根據(jù)對稱軸方程為,及最大值為可列出關(guān)于的方程組,解方程組可得的值,從而可得結(jié)果;(2)根據(jù)(1)的結(jié)論可知,開口向上的拋物線對稱軸在內(nèi),結(jié)合二次函數(shù)的圖象可得的單調(diào)增區(qū)間為,單調(diào)減區(qū)間為.【詳解】(1)由題意知,∴,∴.(2)∵,∴當時,的單調(diào)增區(qū)間為,單調(diào)減區(qū)間為,又,∴最小值為.20、(1)(2)【解析】(1)根據(jù)即可求出實數(shù)a的值;(2)令,根據(jù)由求得的值,再根據(jù)正弦函數(shù)的性質(zhì)分析的取值情況,結(jié)合題意即可得出答案.【小問1詳解】解:,∴,∴;【小問2詳解】解:令,則,由得,∵在[-,]上是增函數(shù),在[,]上是減函數(shù),且,∴時,x有兩個值;或時,x有一個值,其它情況,x值不存在,∴時函數(shù)f(x)只有1個零點,時,,要f(x)有2個零點,有,∴時,,要f(x)有2個零點,有,綜上,f(x)有兩個零點時,a的取值范圍是.21、(Ⅰ){x|x<1或x≥5},(Ⅱ)(-∞,3].【解析】(Ⅰ)求出集合A,B,由此能出A∩B,(?UA)∪(?UB)(Ⅱ)由集合C={x|m+1<x<2m﹣1},B∩C=C,得C?B,當C=?時,2m﹣1<m+1,當C≠?時,由C?B得,由此能求出m的取值范圍【詳解】解:(Ⅰ)∵全集U=R,集合A={x|2x-1≥1}={x|x≥1},B={x|x2-4x-5<0}={x|-1<x<5}

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論