版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
湖南名師聯(lián)盟2026屆高二數(shù)學第一學期期末綜合測試模擬試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若橢圓對稱軸是坐標軸,長軸長為,焦距為,則橢圓的方程()A. B.C.或 D.以上都不對2.已知直三棱柱中,,,,則異面直線與所成角的余弦值為()A. B.C. D.3.已知圓:,點是直線:上的動點,過點引圓的兩條切線、,其中、為切點,則直線經(jīng)過定點()A. B.C. D.4.如圖,O是坐標原點,P是雙曲線右支上的一點,F(xiàn)是E的右焦點,延長PO,PF分別交E于Q,R兩點,已知QF⊥FR,且,則E的離心率為()A. B.C. D.5.已知空間向量,則()A. B.C. D.6.點是正方體的底面內(nèi)(包括邊界)的動點.給出下列三個結(jié)論:①滿足的點有且只有個;②滿足的點有且只有個;③滿足平面的點的軌跡是線段.則上述結(jié)論正確的個數(shù)是()A. B.C. D.7.在中,B=30°,BC=2,AB=,則邊AC的長等于()A. B.1C. D.28.下列命題正確的是()A.經(jīng)過三點確定一個平面B.經(jīng)過一條直線和一個點確定一個平面C.四邊形確定一個平面D.兩兩相交且不共點的三條直線確定一個平面9.已知△的頂點B,C在橢圓上,頂點A是橢圓的一個焦點,且橢圓的另一個焦點在BC邊上,則△的周長是()A. B.C.8 D.1610.點到直線的距離為2,則的值為()A.0 B.C.0或 D.0或11.已知過點的直線l與圓相交于A,B兩點,則的取值范圍是()A. B.C. D.12.設(shè)函數(shù),當自變量t由2變到2.5時,函數(shù)的平均變化率是()A.5.25 B.10.5C.5.5 D.11二、填空題:本題共4小題,每小題5分,共20分。13.拋物線的準線方程是________14.如圖,在四棱錐中,O是AD邊中點,底面ABCD..在底面ABCD中,,,,.(1)求證:平面POC;(2)求直線PC與平面PAB所成角的正弦值.15.已知圓,圓,則兩圓的公切線條數(shù)是___________.16.若關(guān)于的不等式的解集為R,則的取值范圍是______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知拋物線y2=2px(p>0)的焦點為F,過F且與x軸垂直的直線交該拋物線于A,B兩點,|AB|=4(1)求拋物線的方程;(2)過點F的直線l交拋物線于P,Q兩點,若△OPQ的面積為4,求直線l的斜率(其中O為坐標原點)18.(12分)已知是公差不為0的等差數(shù)列,,且成等比數(shù)列(1)求數(shù)列通項公式;(2)設(shè),求數(shù)列的前項和19.(12分)在△ABC中,角A,B,C的對邊分別是a,b,c已知c?cosB+(b-2a)cosC=0(1)求角C的大?。?)若c=2,a+b=ab,求△ABC的面積20.(12分)設(shè)p:關(guān)于x的不等式有解,q:.(1)若p為真命題,求實數(shù)m的取值范圍;(2)若為假命題,為真命題,求實數(shù)m的取值范圍.21.(12分)已知:,橢圓,雙曲線.(1)若的離心率為,求的離心率;(2)當時,過點的直線與的另一個交點為,與的另一個交點為,若恰好是的中點,求直線的方程.22.(10分)已知橢圓的長軸長與短軸長之比為2,、分別為其左、右焦點.請從下列兩個條件中選擇一個作為已知條件,完成下面的問題:①過點且斜率為1的直線與橢圓E相切;②過且垂直于x軸的直線與橢圓在第一象限交于點P,且的面積為.(只能從①②中選擇一個作為已知)(1)求橢圓E的方程;(2)過點的直線l與橢圓E交于A,B兩點,與直線交于H點,若,.證明:為定值
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】求得、、的值,由此可得出所求橢圓的方程.【詳解】由題意可得,解得,,由于橢圓的對稱軸是坐標軸,則該橢圓的方程為或.故選:C.2、C【解析】作出輔助線,找到異面直線與所成角,進而利用余弦定理及勾股定理求出各邊長,最后利用余弦定理求出余弦值.【詳解】如圖所示,把三棱柱補成四棱柱,異面直線與所成角為,由勾股定理得:,,∴故選:C3、D【解析】根據(jù)圓的切線性質(zhì),結(jié)合圓的標準方程、圓與圓的位置關(guān)系進行求解即可.【詳解】因為、是圓的兩條切線,所以,因此點、在以為直徑的圓上,因為點是直線:上的動點,所以設(shè),點,因此的中點的橫坐標為:,縱坐標為:,,因此以為直徑的圓的標準方程為:,而圓:,得:,即為直線的方程,由,所以直線經(jīng)過定點,故選:D【點睛】關(guān)鍵點睛:由圓的切線性質(zhì)得到點、在以為直徑的圓上,運用圓與圓的位置關(guān)系進行求解是解題的關(guān)鍵.4、B【解析】令雙曲線E的左焦點為,連線即得,設(shè),借助雙曲線定義及直角用a表示出|PF|,,再借助即可得解.【詳解】如圖,令雙曲線E的左焦點為,連接,由對稱性可知,點線段中點,則四邊形是平行四邊形,而QF⊥FR,于是有是矩形,設(shè),則,,,在中,,解得或m=0(舍去),從而有,中,,整理得,,所以雙曲線E的離心率為故選:B5、C【解析】A利用向量模長的坐標表示判斷;B根據(jù)向量平行的判定,是否存在實數(shù)使即可判斷;C向量數(shù)量積的坐標表示求即可判斷;D利用向量坐標的線性運算及數(shù)量積的坐標表示求即可.【詳解】因為,所以A不正確:因為不存在實數(shù)使,所以B不正確;因為,故,所以C正確;因為,所以,所以D不正確故選:C6、C【解析】對于①,根據(jù)線線平行的性質(zhì)可知點即為點,因此可判斷①正確;對于②,根據(jù)線面垂直的判定可知平面,,由此可判定的位置,進而判定②的正誤;對于③,根據(jù)面面平行可判定平面平面,因此可判斷此時一定落在上,由此可判斷③的正誤.【詳解】如圖:對于①,在正方體中,,若異于,則過點至少有兩條直線和平行,這是不可能的,因此底面內(nèi)(包括邊界)滿足的點有且只有個,即為點,故①正確;對于②,正方體中,平面,平面,所以,又,所以,而,平面,故平面,因此和垂直的直線一定落在平面內(nèi),由是平面上的動點可知,一定落在上,這樣的點有無數(shù)多個,故②錯誤;對于③,,平面,則平面,同理平面,而,所以平面平面,而平面,所以一定落在平面上,由是平面上的動點可知,此時一定落在上,即點的軌跡是線段,故③正確,故選:C.7、B【解析】利用余弦定理即得【詳解】由余弦定理,得,解得AC=1故選:B.8、D【解析】由平面的基本性質(zhì)結(jié)合公理即可判斷.【詳解】對于A,過不在一條直線上三點才能確定一個平面,故A不正確;對于B,經(jīng)過一條直線和直線外一個點確定一個平面,故B不正確;對于C,空間四邊形不能確定一個平面,故C不正確;對于D,兩兩相交且不共點的三條直線確定一個平面,故D正確.故選:D9、D【解析】根據(jù)橢圓定義求解【詳解】由橢圓定義得△的周長是,故選:D.10、C【解析】根據(jù)點到直線的距離公式即可得出答案.【詳解】解:點到直線的距離為,解得或.故選:C.11、D【解析】經(jīng)判斷點在圓內(nèi),與半徑相連,所以與垂直時弦長最短,最長為直徑【詳解】將代入圓方程得:,所以點在圓內(nèi),連接,當時,弦長最短,,所以弦長,當過圓心時,最長等于直徑8,所以的取值范圍是故選:D12、B【解析】利用平均變化率的公式即得.【詳解】∵,∴.故選:B.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】將拋物線方程化為標準形式,從而得到準線方程.【詳解】拋物線方程可化為:拋物線準線方程為:故答案為【點睛】本題考查拋物線準線的求解,易錯點是未將拋物線方程化為標準方程.14、(1)證明見解析(2)【解析】(1)由題意,證明BCOA是平行四邊形,從而可得,然后根據(jù)線面平行的判斷定理即可證明;(2)證明BCDO是平行四邊形,從而可得,由題意,可建立以為軸建立空間直角坐標系,求出平面ABP的法向量,利用向量法即可求解直線PC與平面PAB所成角的正弦值為.【小問1詳解】證明:由題意,又,所以BCOA是平行四邊形,所以,又平面POC,平面POC,所以平面POC;【小問2詳解】解:,,所以BCDO是平行四邊形,所以,,而,所以,以為軸建立空間直角坐標系,如圖,則,設(shè)平面ABP的一個法向量為,則,取x=1,則,,所以,設(shè)直線PC與平面PAB所成角為,則,所以直線PC與平面PAB所成角的正弦值為.15、【解析】首先把圓的一般方程化為標準方程,進一步求出兩圓的位置關(guān)系,可得兩圓的公切線條數(shù).【詳解】解:由圓,可得:,可得其圓心為,半徑為;由,可得,可得其圓心為,半徑為2;所以可得其圓心距為:,可得:,故兩圓相交,其公切線條數(shù)為,故答案為:2.【點睛】本題主要考查兩圓的位置關(guān)系及兩圓公切線條數(shù)的判斷,屬于中檔題.16、【解析】分為和考慮,當時,根據(jù)題意列出不等式組,求出的取值范圍.【詳解】當?shù)茫?,滿足題意;當時,要想保證關(guān)于的不等式的解集為R,則要滿足:,解得:,綜上:的取值范圍為故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】(1)根據(jù)拋物線的定義以及拋物線通徑的性質(zhì)可得,從而可得結(jié)果;(2)設(shè)直線的方程為,代入,得,利用弦長公式,結(jié)合韋達定理可得的值,由點到直線的距離公式,根據(jù)三角形面積公式可得,從而可得結(jié)果.【詳解】(1)由拋物線的定義得到準線的距離都是p,所以|AB|=2p=4,所以拋物線的方程為y2=4x(2)設(shè)直線l的方程為y=k(x-1),P(x1,y1),Q(x2,y2)因為直線l與拋物線有兩個交點,所以k≠0,得,代入y2=4x,得,且恒成立,則,y1y2=-4,所以又點O到直線l的距離,所以,解得,即【點睛】本題主要考查直線與拋物線的位置關(guān)系的相關(guān)問題,意在考查綜合利用所學知識解決問題能力和較強的運算求解能力,其常規(guī)思路是先把直線方程與圓錐曲線方程聯(lián)立,消元、化簡,然后應(yīng)用根與系數(shù)的關(guān)系建立方程,解決相關(guān)問題18、(1)(2)【解析】(1)設(shè)等差數(shù)列的公差為,依題意得到方程組,解得、,即可求出數(shù)列的通項公式;(2)由(1)可得,再利用分組求和法求和即可;【小問1詳解】解:設(shè)等差數(shù)列的公差為,由題意,得,解得或,因為,所以【小問2詳解】解:當時,,所以19、(1);(2).【解析】(1)由題意首先利用正弦定理邊化角,據(jù)此求得,則角C的大小是;(2)由題意結(jié)合余弦定理可得,然后利用面積公式可求得△ABC的面積為.試題解析:(1)∵c?cosB+(b-2a)cosC=0,由正弦定理化簡可得:sinCcosB+sinBcosC-2sinAcosC=0,即sinA=2sinAcosC,∵0<A<π,∴sinA≠0.∴cosC=.∵0<C<π,∴C=.(2)由(1)可知:C=.∵c=2,a+b=ab,即a2b2=a2+b2+2ab.由余弦定理cosC==,∴ab=(ab)2-2ab-c2.可得:ab=4.那么:△ABC的面積S=absinC=.20、(1)(2)【解析】根據(jù)題意,解出p和q里面m的范圍即可求解﹒其中有解,則≥0﹒【小問1詳解】p為真命題時,,解得,所以m的取值范圍是;【小問2詳解】q為真命題時,即,解得,所以q為假命題時,或,由(1)知,p為假時,因為為假命題,為真命題,所以p,q為一真一假,當p真q假時,且“或”,解得;當p假q真時,,解得;綜上:m的取值范圍是21、(1)(2)或【解析】(1)有橢圓的離心率可以得到,的關(guān)系,在雙曲線中方程是非標準的方程,注意套公式時容易出錯.(2)聯(lián)立方程分別解得P,Q兩點的橫坐標,利用中點坐標公式即可解得斜率值.【小問1詳解】橢圓的離心率為,,在雙曲線中因為,.【小問2詳解】當時,橢圓,雙曲線.當過點的直線斜率不存在時,點P,Q恰好重合,坐標為,所以不符合條件;當斜率存在時,設(shè)直線方程為,,聯(lián)立方程得,利用韋達定理,所以;同理聯(lián)立方程,韋達定理得,所以由于是的中點,所以,所以,即,化簡得,所以直線方程為或.22、(1)(2)證明見解析【解析】(1)選①:直線與橢圓聯(lián)立,利用判別
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 納米科學與技術(shù)
- 種子銷售經(jīng)營管理制度(3篇)
- 精細化能耗管理制度(3篇)
- 藥房營運活動方案策劃(3篇)
- 請假外出審批管理制度內(nèi)容(3篇)
- 《GA 777.2-2008指紋數(shù)據(jù)代碼 第2部分:指紋紋型代碼》專題研究報告
- 中學宿舍管理規(guī)則制度
- 養(yǎng)老院入住評估與管理制度
- 企業(yè)員工培訓與職業(yè)成長路徑制度
- 交通監(jiān)控設(shè)備管理規(guī)范制度
- 化學●廣西卷丨2024年廣西普通高中學業(yè)水平選擇性考試高考化學真題試卷及答案
- 人衛(wèi)基礎(chǔ)護理學第七版試題及答案
- 煙草物流寄遞管理制度
- 被打和解協(xié)議書范本
- 《糖尿病合并高血壓患者管理指南(2025版)》解讀
- 養(yǎng)老院敬老院流動資產(chǎn)管理制度
- 工程施工計劃與資源配置
- 監(jiān)理掛靠合同協(xié)議
- 機械密封安裝及維護培訓
- 噴粉廠噴粉施工方案
- 廣東省湛江市雷州市2024-2025學年七年級上學期期末語文試題(原卷版+解析版)
評論
0/150
提交評論