2026屆下關(guān)第一中學(xué)數(shù)學(xué)高二上期末達(dá)標(biāo)檢測(cè)試題含解析_第1頁(yè)
2026屆下關(guān)第一中學(xué)數(shù)學(xué)高二上期末達(dá)標(biāo)檢測(cè)試題含解析_第2頁(yè)
2026屆下關(guān)第一中學(xué)數(shù)學(xué)高二上期末達(dá)標(biāo)檢測(cè)試題含解析_第3頁(yè)
2026屆下關(guān)第一中學(xué)數(shù)學(xué)高二上期末達(dá)標(biāo)檢測(cè)試題含解析_第4頁(yè)
2026屆下關(guān)第一中學(xué)數(shù)學(xué)高二上期末達(dá)標(biāo)檢測(cè)試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩11頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2026屆下關(guān)第一中學(xué)數(shù)學(xué)高二上期末達(dá)標(biāo)檢測(cè)試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請(qǐng)用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無(wú)效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知點(diǎn)為直線上任意一點(diǎn),為坐標(biāo)原點(diǎn).則以為直徑的圓除過(guò)定點(diǎn)外還過(guò)定點(diǎn)()A. B.C. D.2.一組“城市平安建設(shè)”的滿意度測(cè)評(píng)結(jié)果,,…,的平均數(shù)為116分,則,,…,,116的()A.平均數(shù)變小 B.平均數(shù)不變C.標(biāo)準(zhǔn)差不變 D.標(biāo)準(zhǔn)差變大3.已知等比數(shù)列的前n項(xiàng)和為,且滿足公比0<q<1,<0,則下列說(shuō)法不正確的是()A.一定單調(diào)遞減 B.一定單調(diào)遞增C.式子-≥0恒成立 D.可能滿足=,且k≠14.在四棱錐中,底面是正方形,為的中點(diǎn),若,則()A. B.C. D.5.已知△的頂點(diǎn)B,C在橢圓上,頂點(diǎn)A是橢圓的一個(gè)焦點(diǎn),且橢圓的另一個(gè)焦點(diǎn)在BC邊上,則△的周長(zhǎng)是()A. B.C.8 D.166.直線y=kx+3與圓(x-3)2+(y-2)2=4相交于M,N兩點(diǎn),若,則k的取值范圍是()A. B.(-∞,]∪[0,+∞)C. D.7.丹麥數(shù)學(xué)家琴生(Jensen)是19世紀(jì)對(duì)數(shù)學(xué)分析作出卓越貢獻(xiàn)的巨人,特別是在函數(shù)的凸凹性與不等式方面留下了很多寶貴的成果.設(shè)函數(shù)在區(qū)間內(nèi)的導(dǎo)函數(shù)為,在區(qū)間內(nèi)的導(dǎo)函數(shù)為,在區(qū)間內(nèi)恒成立,則稱函數(shù)在區(qū)間內(nèi)為“凸函數(shù)”,則下列函數(shù)在其定義域內(nèi)是“凸函數(shù)”的是()A. B.C. D.8.如圖,面積為的正方形中有一個(gè)不規(guī)則的圖形,可按下面方法估計(jì)的面積:在正方形中隨機(jī)投擲個(gè)點(diǎn),若個(gè)點(diǎn)中有個(gè)點(diǎn)落入中,則的面積的估計(jì)值為,假設(shè)正方形的邊長(zhǎng)為,的面積為,并向正方形中隨機(jī)投擲個(gè)點(diǎn),用以上方法估計(jì)的面積時(shí),的面積的估計(jì)值與實(shí)際值之差在區(qū)間內(nèi)的概率為附表:A. B.C. D.9.已知雙曲線的左焦點(diǎn)為,,為雙曲線的左、右頂點(diǎn),漸近線上的一點(diǎn)滿足,且,則雙曲線的離心率為()A. B.C. D.10.已知等比數(shù)列的公比q為整數(shù),且,,則()A.2 B.3C.-2 D.-311.已知函數(shù)及其導(dǎo)函數(shù),若存在使得,則稱是的一個(gè)“巧值點(diǎn)”.下列選項(xiàng)中沒有“巧值點(diǎn)”的函數(shù)是()A. B.C. D.12.以軸為對(duì)稱軸,頂點(diǎn)為坐標(biāo)原點(diǎn),焦點(diǎn)到準(zhǔn)線的距離為4的拋物線方程是()A. B.C.或 D.或二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù),則曲線在點(diǎn)處的切線方程為___________14.《九章算術(shù)》中的“兩鼠穿墻題”是我國(guó)數(shù)學(xué)的古典名題.“今有城墻厚若干尺,兩鼠對(duì)穿,大鼠日一尺,小鼠也日一尺.大鼠日自倍,小鼠日自半……”題意是:“兩只老鼠從城墻的兩邊相對(duì)分別打洞穿墻.大老鼠第一天進(jìn)一尺,以后每天加倍;小老鼠第一天也進(jìn)一尺,以后每天減半……”則小老鼠第三天穿城墻______尺;若城墻厚40尺,則至少在第________天相遇15.若曲線在處的切線平行于x軸,則___________.16.拋物線上一點(diǎn)到其焦點(diǎn)的距離為,則的值為______三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)在棱長(zhǎng)為4的正方體中,點(diǎn)分別在線段上,點(diǎn)在線段延長(zhǎng)線上,,,連接交線段于點(diǎn).(1)求證平面;(2)求異面直線所成角的余弦值.18.(12分)已知中,分別為角的對(duì)邊,且(1)求;(2)若為邊的中點(diǎn),,求的面積19.(12分)已知橢圓的中心在原點(diǎn),對(duì)稱軸為坐標(biāo)軸且焦點(diǎn)在軸上,拋物線:,若拋物線的焦點(diǎn)在橢圓上,且橢圓的離心率為.(1)求橢圓的方程;(2)已知斜率存在且不為零的直線滿足:與橢圓相交于不同兩點(diǎn)、,與直線相交于點(diǎn).若橢圓上一動(dòng)點(diǎn)滿足:,,且存在點(diǎn),使得恒為定值,求的值.20.(12分)已知函數(shù).(1)求曲線在點(diǎn)處的切線方程;(2)求在區(qū)間上的最值.21.(12分)點(diǎn)與定點(diǎn)的距離和它到直線:的距離的比是常數(shù).(1)求動(dòng)點(diǎn)的軌跡的方程;(2)點(diǎn)在(1)中軌跡上運(yùn)動(dòng)軸,為垂足,點(diǎn)滿足,求點(diǎn)軌跡方程.22.(10分)已知集合,,.(1)求;(2)若“”是“”的必要不充分條件,求實(shí)數(shù)a的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】設(shè)垂直于直線,可知圓恒過(guò)垂足;兩條直線方程聯(lián)立可求得點(diǎn)坐標(biāo).【詳解】設(shè)垂直于直線,垂足為,則直線方程為:,由圓的性質(zhì)可知:以為直徑的圓恒過(guò)點(diǎn),由得:,以為直徑的圓恒過(guò)定點(diǎn).故選:D.2、B【解析】利用平均數(shù)、方差的定義和性質(zhì)直接求出,,…,,116的平均數(shù)、方差從而可得答案.【詳解】,,…,的平均數(shù)為116分,則,,…,,116的平均數(shù)為設(shè),,…,的方差為則所以則,,…,,116的方差為所以,,…,,116的平均數(shù)不變,方差變小.標(biāo)準(zhǔn)差變小.故選:B3、D【解析】根據(jù)等比數(shù)列的通項(xiàng)公式,前n項(xiàng)和的意義,可逐項(xiàng)分析求解.【詳解】因?yàn)榈缺葦?shù)列的前n項(xiàng)和為,且滿足公比0<q<1,<0,所以當(dāng)時(shí),由可得,故數(shù)列為增函數(shù),故B正確;由0<q<1,<0知,所以,故一定單調(diào)遞減,故A正確;因?yàn)楫?dāng)時(shí),,,所以,即-,當(dāng)時(shí),,綜上,故C正確;若=,且k≠1,則,即,因?yàn)?,故,故矛盾,所以D不正確.故選:D4、C【解析】由為的中點(diǎn),根據(jù)向量的運(yùn)算法則,可得,即可求解.【詳解】由底面是正方形,E為的中點(diǎn),且,根據(jù)向量的運(yùn)算法則,可得.故選:C.5、D【解析】根據(jù)橢圓定義求解【詳解】由橢圓定義得△的周長(zhǎng)是,故選:D.6、A【解析】圓心為,半徑為2,圓心到直線的距離為,解不等式得k的取值范圍考點(diǎn):直線與圓相交的弦長(zhǎng)問(wèn)題7、B【解析】根據(jù)基本初等函數(shù)的導(dǎo)函數(shù)公式求各函數(shù)二階導(dǎo)函數(shù),判斷其在定義域上是否恒有,即可知正確選項(xiàng).【詳解】A:,則,顯然定義域內(nèi)有正有負(fù),故不是“凸函數(shù)”;B:,則,故是“凸函數(shù)”;C:,則,故不是“凸函數(shù)”;D:,則,顯然定義域內(nèi)有正有負(fù),故不是“凸函數(shù)”;故選:B8、D【解析】每個(gè)點(diǎn)落入中的概率為,設(shè)落入中的點(diǎn)的數(shù)目為,題意所求概率為故選D9、C【解析】由雙曲線的漸近線方程和兩點(diǎn)的距離公式,求得點(diǎn)的坐標(biāo)和,在中,利用余弦定理,求得的關(guān)系式,再由離心率公式,計(jì)算即可求解.【詳解】由題意,雙曲線,可得,設(shè)在漸近線上,且點(diǎn)在第一象限內(nèi),由,解得,即點(diǎn),所以,在中,由余弦定理可得,可得,即,所以雙曲線離心率為.故選:C.【點(diǎn)睛】求解橢圓或雙曲線的離心率的三種方法:1、定義法:通過(guò)已知條件列出方程組,求得得值,根據(jù)離心率的定義求解離心率;2、齊次式法:由已知條件得出關(guān)于的二元齊次方程,然后轉(zhuǎn)化為關(guān)于的一元二次方程求解;3、特殊值法:通過(guò)取特殊值或特殊位置,求出離心率.10、A【解析】由等比數(shù)列的性質(zhì)有,結(jié)合已知求出基本量,再由即可得答案.【詳解】因?yàn)椋?,且q為整數(shù),所以,,即q=2.所以.故選:A11、C【解析】利用新定義:存在使得,則稱是的一個(gè)“巧點(diǎn)”,對(duì)四個(gè)選項(xiàng)中的函數(shù)進(jìn)行一一的判斷即可【詳解】對(duì)于A,,則,令,解得或,即有解,故選項(xiàng)A的函數(shù)有“巧值點(diǎn)”,不符合題意;對(duì)于B,,則,令,令,則g(x)在x>0時(shí)為增函數(shù),∵(1),(e),由零點(diǎn)的存在性定理可得,在上存在唯一零點(diǎn),即方程有解,故選項(xiàng)B的函數(shù)有“巧值點(diǎn)”,不符合題意;對(duì)于C,,則,令,故方程無(wú)解,故選項(xiàng)C的函數(shù)沒有“巧值點(diǎn)”,符合題意;對(duì)于D,,則,令,則.∴方程有解,故選項(xiàng)D的函數(shù)有“巧值點(diǎn)”,不符合題意故選:C12、C【解析】根據(jù)拋物線的概念以及幾何性質(zhì)即可求拋物線的標(biāo)準(zhǔn)方程.【詳解】依題意設(shè)拋物線方程為因?yàn)榻裹c(diǎn)到準(zhǔn)線的距離為4,所以,所以,所以拋物線方程或故選:C二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)導(dǎo)數(shù)的幾何意義求出切線的斜率,利用點(diǎn)斜式求切線方程.【詳解】解:因,所以,又故切線方程為,整理為,故答案為:14、①.##0.25②.6【解析】由題意知小老鼠每天打洞的距離是以1為首項(xiàng),以為公比的等比數(shù)列,大老鼠每天打洞的距離是以1為首項(xiàng),以2為公比的等比數(shù)列,即可算出小老鼠第三天穿城墻的厚度,再根據(jù)等比數(shù)列求和公式,構(gòu)造等式,即可得解.【詳解】由題意知,小老鼠每天打洞的距離是以1為首項(xiàng),以為公比的等比數(shù)列,前天打洞之和為,∴小老鼠第三天穿城墻的厚度為;大老鼠每天打洞的距離是以1為首項(xiàng),以2為公比的等比數(shù)列,前天打洞之和為,∴兩只老鼠第天打洞穿墻的厚度之和為,且數(shù)列為遞增數(shù)列,而,,又城墻厚40尺,所以這兩只老鼠至少6天相遇.故答案為:;6.15、【解析】求出導(dǎo)函數(shù)得到函數(shù)在時(shí)的導(dǎo)數(shù),由導(dǎo)數(shù)值為0求得a的值【詳解】由,得,則,∵曲線在點(diǎn)處的切線平行于x軸,∴,即.故答案為:16、【解析】將拋物線方程化為標(biāo)準(zhǔn)方程,利用拋物線的定義將拋物線上的點(diǎn)到焦點(diǎn)的距離轉(zhuǎn)化為到準(zhǔn)線的距離,再利用點(diǎn)到直線的距離公式進(jìn)行求解.【詳解】將拋物線化為,由拋物線定義得點(diǎn)到準(zhǔn)線的距離為,即,解得故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)證明見解析(2)【解析】(1)由線面平行的判定定理證明;(2)建立空間直角坐標(biāo)系,用空間向量法求異面直線所成的角【小問(wèn)1詳解】證明:且,由三角形相似可得,,,又,,又平面,平面平面;【小問(wèn)2詳解】解:以為坐標(biāo)原點(diǎn),分別以為軸建立空間坐標(biāo)系,如圖.則設(shè)異面直線所成角為,則18、(1);(2)【解析】(1)利用正弦定理化邊為角可得,化簡(jiǎn)可得,結(jié)合,即得解;(2)在中,由余弦定理得,可得,利用面積公式即得解【詳解】(1)中由正弦定理及條件,可得,∵,,∴,∵,∴,或,又∵,∴,∴,,∴(2)為邊的中點(diǎn),,,得,中,由余弦定理得,∴,∴,∵,∴,19、(1)(2)【解析】(1)先求得橢圓的,代入公式即可求得橢圓的方程;(2)以設(shè)而不求的方法得到兩根和,再由條件,得到四邊形為平行四邊形,并以向量方式進(jìn)行等價(jià)轉(zhuǎn)化,再與恒為定值進(jìn)行聯(lián)系,即可求得的值.【小問(wèn)1詳解】由條件可設(shè)橢圓:,因?yàn)閽佄锞€:的焦點(diǎn)為,所以,解得因?yàn)闄E圓離心率為,所以,則,故橢圓的方程為【小問(wèn)2詳解】設(shè)直線:,,,把直線的方程代入橢圓的方程,可得,所以,因?yàn)?,,所以四邊形為平行四邊形,得,即,得由在橢圓上可得,,即因?yàn)椋炙?,所以將代入得,所以,?【點(diǎn)睛】數(shù)形結(jié)合是數(shù)學(xué)解題中常用的思想方法,數(shù)形結(jié)合的思想可以使某些抽象的數(shù)學(xué)問(wèn)題直觀化、生動(dòng)化,能夠變抽象思維為形象思維,有助于把握數(shù)學(xué)問(wèn)題的本質(zhì);另外,由于使用了數(shù)形結(jié)合的方法,很多問(wèn)題便迎刃而解,且解法簡(jiǎn)捷。20、(1)(2)最小值為0,最大值為4【解析】(1)利用導(dǎo)數(shù)求得切線方程.(2)結(jié)合導(dǎo)數(shù)求得在區(qū)間上的最值.【小問(wèn)1詳解】,所以曲線在點(diǎn)處的切線方程為.【小問(wèn)2詳解】,所以在區(qū)間遞增;在區(qū)間遞減,,所以在區(qū)間上的最小值為,最大值為.21、(1);(2)【解析】(1)根據(jù)題意用表示出與,再代入,再化簡(jiǎn)即可得出答案。(2)設(shè),利用表示出點(diǎn),再將點(diǎn)代入橢圓,化簡(jiǎn)即可得出答案?!驹斀狻浚?)由題意知,所以化簡(jiǎn)得:(2)設(shè),因?yàn)椋瑒t將代入橢圓得化簡(jiǎn)得【點(diǎn)睛】本題考查軌跡方程,一般求某點(diǎn)的軌跡方程,只需要設(shè)該點(diǎn)為,利用所給條件建立的關(guān)系式,化簡(jiǎn)即可。屬于基礎(chǔ)題。22、(

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論