版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2026屆云南省會曲靖市會澤縣第一中學高一數(shù)學第一學期期末聯(lián)考試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.設,則()A. B.C. D.2.函數(shù)的最小值和最小正周期為()A.1和2π B.0和2πC.1和π D.0和π3.已知函數(shù)的圖像過點和,則在定義域上是A.奇函數(shù) B.偶函數(shù)C.減函數(shù) D.增函數(shù)4.某幾何體的三視圖如圖所示(單位:),則該幾何體的體積(單位:)是()A. B.C. D.5.數(shù)列的前項的和為()A. B.C. D.6.若,則的大小關系為()A. B.C. D.7.設集合,則()A. B.C. D.8.三個數(shù)的大小關系是()A. B.C. D.9.設,則“”是“”的()A.充要條件 B.充分不必要條件C.必要不充分條件 D.既不充分也不必要條件10.已知函數(shù),若方程有四個不同的解,,,,且,則的取值范圍是()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知y=f(x)是奇函數(shù),當x≥0時,,則f(-8)的值是____.12.若,則a的取值范圍是___________13.已知平面向量,,,,,則的值是______14.____15.函數(shù)的圖象一定過定點P,則P點的坐標是______16.函數(shù)的零點個數(shù)為_________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知函數(shù)在上最大值為3,最小值為(1)求的解析式;(2)若,使得,求實數(shù)m的取值范圍18.給出以下四個式子:①;②;③;④.(1)已知所給各式都等于同一個常數(shù),試從上述四個式子中任選一個,求出這個常數(shù);(2)分析以上各式的共同特點,寫出能反應一般規(guī)律的等式,并對等式正確性作出證明.19.直線l1過點A(0,1),l2過點B(5,0),如果l1∥l2且l1與l2的距離為5,求l1,l2的方程.20.已知.(1)求,的值;(2)求的值.21.“活水圍網(wǎng)”養(yǎng)魚技術具有養(yǎng)殖密度高、經(jīng)濟效益好的特點.研究表明:“活水圍網(wǎng)”養(yǎng)魚時,某種魚在一定的條件下,每尾魚的平均生長速度(單位:千克/年)是養(yǎng)殖密度(單位:尾/立方米)的函數(shù).當時(尾/立方米)時,的值為2(千克/年);當時,是的一次函數(shù);當(尾/立方米)時,因缺氧等原因,的值為0(千克/年).(1)當時,求函數(shù)的表達式;(2)當為多大時,魚的年生長量(單位:千克/立方米)可以達到最大,并求出最大值.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】利用中間量隔開三個值即可.【詳解】∵,∴,又,∴,故選:A【點睛】本題考查實數(shù)大小的比較,考查指對函數(shù)的性質,屬于??碱}型.2、D【解析】由正弦函數(shù)的性質即可求得的最小值和最小正周期【詳解】解:∵,∴當=﹣1時,f(x)取得最小值,即f(x)min;又其最小正周期Tπ,∴f(x)的最小值和最小正周期分別是:,π故選D【點睛】本題考查正弦函數(shù)的周期性與最值,熟練掌握正弦函數(shù)的圖象與性質是解題關鍵,屬于中檔題3、D【解析】∵f(x)的圖象過點(4,0)和(7,1),∴∴f(x)=log4(x-3).∴f(x)是增函數(shù).∵f(x)的定義域是(3,+∞),不關于原點對稱.∴f(x)為非奇非偶函數(shù)故選D4、C【解析】先還原幾何體為一直四棱柱,再根據(jù)柱體體積公式求結果.【詳解】根據(jù)三視圖可得幾何體為一個直四棱柱,高為,底面為直角梯形,上下底分別為、,梯形的高為,因此幾何體的體積為,選C.【點睛】先由幾何體的三視圖還原幾何體的形狀,再在具體幾何體中求體積或表面積等.5、C【解析】根據(jù)分組求和可得結果.【詳解】,故選:C6、D【解析】根據(jù)對數(shù)的運算性質以及指數(shù)函數(shù)和對數(shù)函數(shù)的單調性即可判斷【詳解】因為,而函數(shù)在定義域上遞增,,所以故選:D7、B【解析】根據(jù)交集定義運算即可【詳解】因為,所以,故選:B.【點睛】本題考查集合的運算,屬基礎題,在高考中要求不高,掌握集合的交并補的基本概念即可求解.8、A【解析】利用指數(shù)函數(shù)、對數(shù)函數(shù)、正弦函數(shù)的單調性結合中間量法即可求解【詳解】解:,,,故選:A9、C【解析】根據(jù)一元二次不等式的解法,結合充分性、必要性的定義進行判斷即可.【詳解】由,由不一定能推出,但是由一定能推出,所以“”是“”的必要不充分條件,故選:C10、D【解析】根據(jù)圖象可得:,,,.,則.令,,,而函數(shù).即可求解.【詳解】解:函數(shù),的圖象如下:根據(jù)圖象可得:若方程有四個不同的解,,,,且,則,,,.,,則.令,,,而函數(shù)在,單調遞增.所以,則.故選:D.【點睛】本題考查函數(shù)的圖象與性質,考查函數(shù)與方程思想、轉化與化歸思想、數(shù)形結合思想,考查運算求解能力,求解時注意借助圖象分析問題,屬于中檔題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】先求,再根據(jù)奇函數(shù)求【詳解】,因為為奇函數(shù),所以故答案為:【點睛】本題考查根據(jù)奇函數(shù)性質求函數(shù)值,考查基本分析求解能力,屬基礎題.12、【解析】先通過的大小確定的單調性,再利用單調性解不等式即可【詳解】解:且,,得,又在定義域上單調遞減,,,解得故答案為:【點睛】方法點睛:在解決與對數(shù)函數(shù)相關的解不等式問題時,要優(yōu)先考慮利用對數(shù)函數(shù)的單調性來求解.在利用單調性時,一定要明確底數(shù)a的取值對函數(shù)增減性的影響,及真數(shù)必須為正的限制條件13、【解析】根據(jù)向量垂直向量數(shù)量積等于,解得α·β=,再利用向量模的求法,將式子平方即可求解.【詳解】由得,所以,所以所以.故答案為:14、-1【解析】根據(jù)和差公式得到,代入化簡得到答案.【詳解】故答案為:【點睛】本題考查了和差公式,意在考查學生的計算能力.15、(1,4)【解析】已知過定點,由向右平移個單位,向上平移個單位即可得,故根據(jù)平移可得到定點.【詳解】由向右平移個單位,向上平移個單位得到,過定點,則過定點.【點睛】本題考查指數(shù)函數(shù)的圖象恒過定點以及函數(shù)圖象的平移問題.圖象平移,定點也隨之平移,平移后仍是定點.16、3【解析】作出函數(shù)圖象,根據(jù)函數(shù)零點與函數(shù)圖象的關系,直接判斷零點個數(shù).【詳解】作出函數(shù)圖象,如下,由圖象可知,函數(shù)有3個零點(3個零點分別為,0,2).故答案為:3三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)根據(jù)的最值列方程組,解方程組求得,進而求得.(2)利用分離常數(shù)法,結合基本不等式求得的取值范圍.【小問1詳解】的開口向上,對稱軸為,所以在區(qū)間上有:,即,所以.【小問2詳解】依題意,使得,即,由于,,當且僅當時等號成立.所以.18、(1);(2)見解析【解析】分析:(1)利用第二個式子,結合同角三角函數(shù)的平方關系,以及正弦的倍角公式,結合特殊角的三角函數(shù)值,求得結果;(2)根據(jù)題中所給的角之間的關系,歸納推理得到結果,證明過程應用相關公式證明即可.詳解:(1).(2).證明如下:.點睛:該題考查是有關三角公式的問題,涉及到的知識點有同角三角函數(shù)的關系式,正弦的倍角公式,余弦的差角公式等,正確使用公式是解題的關鍵.19、l1:,l2:或者l1:,l2:;【解析】由題意,分成兩種情況討論,l1與l2平行且斜率存在時,通過距離等于5列出方程求解即可;l1與l2平時且斜率不存在時,驗證兩直線間的距離等于5也成立,最后得出答案.【詳解】因為l1∥l2,當l1,l2斜率存在時,設為,則l1,l2方程分別為:,化成一般式為:,,又l1與l2的距離為5,所以,解得:,故l1方程:l2方程:;當l1,l2斜率不存在時,l1:,l2:,也滿足題意;綜上:l1:,l2:或者l1:,l2:;【點睛】(1)當直線的方程中存在字母參數(shù)時,不僅要考慮到斜率存在的一般情況,也要考慮到斜率不存在的特殊情況.同時還要注意x,y的系數(shù)不能同時為零這一隱含條件(2)在判斷兩直線的平行、垂直時,也可直接利用直線方程的系數(shù)間的關系得出結論20、(1),(2)【解析】(1)根據(jù)同角三角函數(shù)關系得到余弦值,正切值,利用二倍角公式求得;(2)在第一問的基礎上,利用余弦的差角公式進行求解.【小問1詳解】∵
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026天津市河西區(qū)明德致遠高級中學骨干教師及青年教師招聘備考題庫含答案詳解
- 2026廣西貴港市引進企業(yè)人才10人備考題庫及一套答案詳解
- 2026年1月福建廈門市教育局直屬學校招聘事業(yè)單位專業(yè)技術崗位骨干教師6人備考題庫完整參考答案詳解
- 2026四川宜賓市高縣姿彩商貿有限責任公司招聘1人備考題庫及參考答案詳解1套
- 高效辦公室環(huán)境建設規(guī)劃指南
- XX初中九年級下學期學科帶頭人示范課安排表
- 綠色建筑設計與施工領域解決方案
- 一件感動的事讀后感言10篇
- 鄉(xiāng)村治理智能化升級人工智能融合建設方案
- 薪酬福利體系測算操作手冊
- 2024-2025閩教版小學英語五年級上冊期末考試測試卷及參考答案(共3套)
- 組件設計文檔-MBOM構型管理
- 臨床協(xié)調員CRC年度總結
- 編鐘樂器市場洞察報告
- 負壓沖洗式口腔護理
- 山東省泰安市2024-2025學年高一物理下學期期末考試試題含解析
- 凈化車間液氮洗操作規(guī)程
- 《中電聯(lián)標準-抽水蓄能電站鋼筋混凝土襯砌水道設計導則》
- 【可行性報告】2023年硫精砂項目可行性研究分析報告
- 道路綠化養(yǎng)護投標方案(技術方案)
- 2023年內蒙古呼倫貝爾市海拉爾區(qū)公開招聘公辦幼兒園控制數(shù)人員80名高頻筆試、歷年難易點考題(共500題含答案解析)模擬試卷
評論
0/150
提交評論