北京海淀中關(guān)村中學(xué)2026屆高二上數(shù)學(xué)期末學(xué)業(yè)水平測(cè)試試題含解析_第1頁
北京海淀中關(guān)村中學(xué)2026屆高二上數(shù)學(xué)期末學(xué)業(yè)水平測(cè)試試題含解析_第2頁
北京海淀中關(guān)村中學(xué)2026屆高二上數(shù)學(xué)期末學(xué)業(yè)水平測(cè)試試題含解析_第3頁
北京海淀中關(guān)村中學(xué)2026屆高二上數(shù)學(xué)期末學(xué)業(yè)水平測(cè)試試題含解析_第4頁
北京海淀中關(guān)村中學(xué)2026屆高二上數(shù)學(xué)期末學(xué)業(yè)水平測(cè)試試題含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

北京海淀中關(guān)村中學(xué)2026屆高二上數(shù)學(xué)期末學(xué)業(yè)水平測(cè)試試題注意事項(xiàng)1.考生要認(rèn)真填寫考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.在三棱錐中,平面,,,,Q是邊上的一動(dòng)點(diǎn),且直線與平面所成角的最大值為,則三棱錐的外接球的表面積為()A. B.C. D.2.已知直線和直線互相垂直,則等于()A.2 B.C.0 D.3.已知四棱錐,底面為平行四邊形,分別為,上的點(diǎn),,設(shè),則向量用為基底表示為()A. B.C. D.4.如圖,某鐵路客運(yùn)部門設(shè)計(jì)的從甲地到乙地旅客托運(yùn)行李的費(fèi)用c(元)與行李質(zhì)量w(kg)之間的流程圖.已知旅客小李和小張托運(yùn)行李的質(zhì)量分別為30kg,60kg,且他們托運(yùn)的行李各自計(jì)費(fèi),則這兩人托運(yùn)行李的費(fèi)用之和為()A.28元 B.33元C.38元 D.48元5.平行直線:與:之間的距離等于()A. B.C. D.6.已知雙曲線的焦距為,且雙曲線的一條漸近線與直線平行,則雙曲線的方程為()A. B.C. D.7.過點(diǎn)且與原點(diǎn)距離最大的直線方程是()A. B.C. D.8.已知雙曲線的一條漸近線方程為,它的焦距為2,則雙曲線的方程為()A B.C. D.9.方程表示的曲線是()A.一個(gè)橢圓和一個(gè)點(diǎn) B.一個(gè)雙曲線的右支和一條直線C.一個(gè)橢圓一部分和一條直線 D.一個(gè)橢圓10.過拋物線C:的準(zhǔn)線上任意一點(diǎn)作拋物線的切線,切點(diǎn)為,若在軸上存在定點(diǎn),使得恒成立,則點(diǎn)的坐標(biāo)為()A. B.C. D.11.執(zhí)行如圖所示的程序框圖,輸出的結(jié)果為()A.4 B.9C.23 D.6412.在等差數(shù)列中,若,且前n項(xiàng)和有最大值,則使得的最大值n為()A.15 B.16C.17. D.18二、填空題:本題共4小題,每小題5分,共20分。13.已知數(shù)列都是等差數(shù)列,公差分別為,數(shù)列滿足,則數(shù)列的公差為__________14.北京天壇的圓丘壇為古代祭天的場(chǎng)所,分上、中、下三層,上層的中心是一塊天心石,圍繞它的第一圈有9塊石板,從第二圈開始,每一圈比前一圈多9塊.已知每層圈數(shù)相同,共有9圈,則下層比上層多______塊石板15.已知數(shù)列滿足,,則使得成立的n的最小值為__________.16.設(shè)橢圓的左,右焦點(diǎn)分別為,,過的直線l與C交于A,B兩點(diǎn)(點(diǎn)A在x軸上方),且滿足,則直線l的斜率為______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖1,在中,,,,分別是,邊上的中點(diǎn),將沿折起到的位置,使,如圖2(1)求點(diǎn)到平面距離;(2)在線段上是否存在一點(diǎn),使得平面與平面夾角的余弦值為.若存在,求出長(zhǎng);若不存在,請(qǐng)說明理由18.(12分)如圖,在四棱錐P﹣ABCD中,PA⊥平面ABCD,AD∥BC,AD⊥CD,且AD=CD=1,BC=2,PA=1(1)求證:AB⊥PC;(2)點(diǎn)M在線段PD上,二面角M﹣AC﹣D的余弦值為,求三棱錐M﹣ACP體積19.(12分)如圖,在四棱錐中,底面為正方形,,直線垂直于平面分別為的中點(diǎn),直線與相交于點(diǎn).(1)證明:與不垂直;(2)求二面角的余弦值.20.(12分)某港口船舶??康姆桨甘窍鹊较韧?,且每次只能??恳凰掖?(1)若甲乙兩艘船同時(shí)到達(dá)港口,雙方約定各派一名代表猜拳:從1,2,3,4,5中各隨機(jī)選一個(gè)數(shù),若兩數(shù)之和為奇數(shù),則甲先???;若兩數(shù)之和為偶數(shù),則乙先???,這種方式對(duì)雙方是否公平?請(qǐng)說明理由;(2)若甲、乙兩船在一晝夜內(nèi)到達(dá)該碼頭的時(shí)刻是等可能的.如果甲船停泊時(shí)間為1h,乙船停泊時(shí)間為2h,求它們中的任意一艘都不需要等待碼頭空出的概率.21.(12分)從某居民區(qū)隨機(jī)抽取10個(gè)家庭,獲得第i個(gè)家庭的月收入xi(單位:千元)與月儲(chǔ)蓄yi(單位:千元)的數(shù)據(jù)資料,算得.(1)求家庭的月儲(chǔ)蓄y對(duì)月收入x的線性回歸方程;(2)判斷變量x與y之間是正相關(guān)還是負(fù)相關(guān);(3)若該居民區(qū)某家庭月收入為7千元,預(yù)測(cè)該家庭的月儲(chǔ)蓄.附:線性回歸方程中,,,其中,為樣本平均值.22.(10分)如圖,多面體中,平面平面,,四邊形為平行四邊形.(1)證明:;(2)若,求二面角的余弦值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】由平面,直線與平面所成角的最大時(shí),最小,也即最小,,由此可求得,從而得,得長(zhǎng),然后取外心,作,取H為的中點(diǎn),使得,則易得,求出的長(zhǎng)即為外接球半徑,從而可得面積【詳解】三棱錐中,平面,直線與平面所成角為,如圖所示;則,且的最大值是,,的最小值是,即A到的距離為,,,在中可得,又,,可得;取的外接圓圓心為,作,取H為的中點(diǎn),使得,則易得,由,解得,,,,由勾股定理得,所以三棱錐的外接球的表面積是.【點(diǎn)睛】本題考查求球的表面積,解題關(guān)鍵是確定球的球心,三棱錐的外接球心在過各面外心且與此面垂直的直線上2、D【解析】利用直線垂直系數(shù)之間的關(guān)系即可得出.【詳解】解:直線和直線互相垂直,則,解得:.故選:D.3、D【解析】通過尋找封閉的三角形,將相關(guān)向量一步步用基底表示即可.【詳解】.故選:D4、D【解析】根據(jù)程序框圖分別計(jì)算小李和小張托運(yùn)行李的費(fèi)用,再求和得出答案.【詳解】由程序框圖可知,當(dāng)時(shí),元;當(dāng)時(shí),元,所以這兩人托運(yùn)行李的費(fèi)用之和為元.故選:D5、B【解析】先由兩條直線平行解出,再按照平行線之間距離公式求解.【詳解】,則:,即,距離為.故選:B.6、B【解析】根據(jù)焦點(diǎn)在x軸上的雙曲線漸近線斜率為±可求a,b關(guān)系,再結(jié)合a,b,c關(guān)系即可求解﹒【詳解】∵雙曲線1(a>0,b>0)的焦距為2,且雙曲線的一條漸近線與直線2x+y=0平行,∴,∴b=2a,∵c2=a2+b2,∴a=1,b=2,∴雙曲線的方程為故選:B7、A【解析】過點(diǎn)且與原點(diǎn)O距離最遠(yuǎn)的直線垂直于直線,再由點(diǎn)斜式求解即可【詳解】過點(diǎn)且與原點(diǎn)O距離最遠(yuǎn)的直垂直于直線,,∴過點(diǎn)且與原點(diǎn)O距離最遠(yuǎn)的直線的斜率為,∴過點(diǎn)且與原點(diǎn)O距離最遠(yuǎn)的直線方程為:,即.故選:A8、B【解析】根據(jù)雙曲線的一條漸近線方程為,可得,再結(jié)合焦距為2和,求得,即可得解.【詳解】解:因?yàn)殡p曲線的一條漸近線方程為,所以,即,又因焦距為2,即,即,因?yàn)椋?,所以,所以雙曲線的方程為.故選:B.9、C【解析】由可得,或,再由方程判斷所表示的曲線.【詳解】由可得,或,即或,則該方程表示一個(gè)橢圓的一部分和一條直線.故選:C10、D【解析】設(shè)切點(diǎn),點(diǎn),聯(lián)立直線的方程和拋物線C的準(zhǔn)線方程可得,將問題轉(zhuǎn)化為對(duì)任意點(diǎn)恒成立,可得,解出,從而求出答案【詳解】設(shè)切點(diǎn),點(diǎn)由題意,拋物線C的準(zhǔn)線,且由,得,則直線的方程為,即,聯(lián)立令,得由題意知,對(duì)任意點(diǎn)恒成立,也就是對(duì)任意點(diǎn)恒成立因?yàn)?,,則,即對(duì)任意實(shí)數(shù)恒成立,所以,即,所以,故選:D【點(diǎn)睛】一般表示拋物線的切線方程時(shí)可將拋物線方程轉(zhuǎn)化為函數(shù)解析式,可利用導(dǎo)數(shù)的幾何意義求解切線斜率,再代入計(jì)算.11、C【解析】直接按程序框圖運(yùn)行即可求出結(jié)果.【詳解】初始化數(shù)值,,第一次執(zhí)行循環(huán)體,,,1≥4不成立;第二次執(zhí)行循環(huán)體,,,2≥4不成立;第三次執(zhí)行循環(huán)體,,,3≥4不成立;第四次執(zhí)行循環(huán)體,,,4≥4成立;輸出故選:C12、A【解析】由題可得,則,可判斷,,即可得出結(jié)果.【詳解】前n項(xiàng)和有最大值,,,,,,,使得的最大值n為15.故選:A.【點(diǎn)睛】本題考查等差數(shù)列前n項(xiàng)和的有關(guān)判斷,解題的關(guān)鍵是得出.二、填空題:本題共4小題,每小題5分,共20分。13、##【解析】利用等差數(shù)列的定義即得.【詳解】∵數(shù)列都是等差數(shù)列,公差分別為,數(shù)列滿足,∴.故答案為:.14、1458【解析】首先由條件可得第圈的石板為,且為等差數(shù)列,利用基本量求和,即可求解.【詳解】設(shè)第圈的石板為,由條件可知數(shù)列是等差數(shù)列,且上層的第一圈為,且,所以,上層的石板數(shù)為,下層的石板數(shù)為.所以下層比上層多塊石板.故答案為:145815、11【解析】由題設(shè)可得,結(jié)合等比數(shù)列的定義知從第二項(xiàng)開始是公比為2的等比數(shù)列,進(jìn)而寫出的通項(xiàng)公式,即可求使成立的最小值n.【詳解】因?yàn)椋?,兩式相除得,整理?因?yàn)椋蕪牡诙?xiàng)開始是等比數(shù)列,且公比為2,因?yàn)?,則,所以,則,由得:,故故答案為:11.16、【解析】設(shè)出直線的方程并與橢圓方程聯(lián)立,結(jié)合根與系數(shù)關(guān)系以及求得直線的斜率.【詳解】橢圓,由于在軸上方且直線的斜率存在,所以直線的斜率不為,設(shè)直線的方程為,且,由,消去并化簡(jiǎn)得,設(shè),,則①,②,由于,所以③,由①②③解得所以直線的方程為,斜率為.故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)存在,【解析】(1)根據(jù)題意分別由已知條件計(jì)算出的面積和的面積,利用求解,(2)如圖建立空間直角坐標(biāo)系,設(shè),然后求出平面與平面的法向量,利用向量平夾角公式列方程可求得結(jié)果【小問1詳解】在中,,因?yàn)?,分別是,邊上的中點(diǎn),所以∥,,所以,所以,因?yàn)?,所以平面,所以平面,因?yàn)槠矫?,所以,所以,因?yàn)槠矫?,平面,所以平面平面,因?yàn)?,所以,因?yàn)?,所以是等邊三角形,取的中點(diǎn),連接,則,,因?yàn)槠矫嫫矫?,平面平面,平面,所以平面,在中,,所以邊上的高為,所以,在梯形中,,設(shè)點(diǎn)到平面的距離為,因?yàn)?,所以,所以,得,所以點(diǎn)到平面的距離為【小問2詳解】由(1)可知平面,,所以以為原點(diǎn),建立如圖所示的空間直角坐標(biāo)系,則,設(shè),則,設(shè)平面的法向量為,則,令,則,設(shè)平面的法向量為,則,令,則,則平面與平面夾角的余弦值為,兩邊平方得,,解得或(舍去),所以,所以18、(1)證明見解析(2)【解析】(1)將問題轉(zhuǎn)化為證明AB⊥平面PAC,然后結(jié)合已知可證;(2)建立空間直角坐標(biāo)系,用向量法結(jié)合已知先確定點(diǎn)M位置,然后轉(zhuǎn)化法求體積可得.【小問1詳解】由題意得四邊形ADCB是直角梯形,AD=CD=1,故∠ACD=45°,∠ACB=45°,AC=.又BC=2,所以,所以,所以AB⊥AC.又PA⊥平面ABCD,AB平面ABCD,所以PA⊥AB.而PA平面PAC,AC平面PAC,,所以AB⊥平面PAC.又PC平面PAC,所以AB⊥PC【小問2詳解】過點(diǎn)A作AE⊥BC于E,易知E為BC中點(diǎn),以A為原點(diǎn),AE,AD,AP所在直線為x軸,y軸,z軸建立空間直角坐標(biāo)系,則,,,.則設(shè),.顯然,是平面ACD的一個(gè)法向量,設(shè)平面MAC的一個(gè)法向量為.則有,取,解得由二面角M﹣AC﹣D的余弦值為,有,解得,所以M為PD中點(diǎn).所以19、(1)證明見解析;(2).【解析】(1)以點(diǎn)為坐標(biāo)原點(diǎn),、、所在直線分別為、、軸建立空間直角坐標(biāo)系,求出點(diǎn)的坐標(biāo),計(jì)算得出,即可證得結(jié)論成立;或利用反證法;(2)利用空間向量法即求.【小問1詳解】方法一:如圖以點(diǎn)為坐標(biāo)原點(diǎn),、、所在直線分別為、、軸建立如下圖所示的空間直角坐標(biāo)系,則、、、、設(shè),因?yàn)椋?,因?yàn)?,所以,得,即點(diǎn),因?yàn)椋?,所以,故與不垂直方法二:假設(shè)與垂直,又直線平面平面,所以.而與相交,所以平面又平面,從而又已知是正方形,所以與不垂直,這產(chǎn)生矛盾,所以假設(shè)不成立,即與不垂直得證.【小問2詳解】設(shè)平面的法向量為,又,因?yàn)?,所以,令,?設(shè)平面的法向量為,因?yàn)?,所以,令,?因?yàn)?顯然二面角為鈍二面角,所以二面角的余弦值是.20、(1)不公平,理由見解析.(2)【解析】(1)通過計(jì)算概率來進(jìn)行判斷.(2)利用幾何概型計(jì)算出所求概率.【小問1詳解】?jī)蓴?shù)之和為奇數(shù)的概率為,兩數(shù)之和為偶數(shù)的概率為,兩個(gè)概率不相等,所以不公平.【小問2詳解】設(shè)甲到的時(shí)刻為,乙到的時(shí)刻為,則,若它們中的任意一艘都不需要等待碼頭空出,則或,畫出可行域如下圖陰影部分所示,所以所求的概率為:.21、(1)=0.3x-0.4;(2)正相關(guān);(3)1.7(千元).【解析】(1)由題意得到n=10,求得,進(jìn)而求得,寫出回歸方程;.(2)由判斷;(3)將x=7代入回歸方程求解.【詳解】(1)由題意知n=10,,則,所以所求回歸方程為=0.3x-0.4.(2)因?yàn)?,所以變量y的值隨x的值增加而增加,故x與y之間是正相關(guān).(3)將x=7代入回歸方程可以預(yù)測(cè)該家庭的月儲(chǔ)蓄為=0.3×7-0.4=1.7(千元).22、(1)證明見解析(2)【解析】(1)先通過平面平面得到,再結(jié)合,可得平面,進(jìn)而可得結(jié)論;(2)取的中點(diǎn),的中點(diǎn),

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論