《探索勾股定理》數(shù)學(xué)課件教案_第1頁
《探索勾股定理》數(shù)學(xué)課件教案_第2頁
《探索勾股定理》數(shù)學(xué)課件教案_第3頁
《探索勾股定理》數(shù)學(xué)課件教案_第4頁
《探索勾股定理》數(shù)學(xué)課件教案_第5頁
已閱讀5頁,還剩21頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

探索勾股定理第一章勾股定理導(dǎo)入新課講授新課當(dāng)堂練習(xí)課堂小結(jié)第1課時(shí)情境引入1.了解勾股定理的內(nèi)容,理解并掌握直角三角形三邊之間的數(shù)量關(guān)系.(重點(diǎn))2.能夠運(yùn)用勾股定理進(jìn)行簡單的計(jì)算.(難點(diǎn))學(xué)習(xí)目標(biāo)導(dǎo)入新課如圖,這是一幅美麗的圖案,仔細(xì)觀察,你能發(fā)現(xiàn)這幅圖中的奧秘嗎?帶著疑問我們來一起探索吧.情境引入(圖中每一格代表一平方厘米)(1)正方形P的面積是

平方厘米;(2)正方形Q的面積是

平方厘米;(3)正方形R的面積是

平方厘米.121SP+SQ=SRRQPACBAC2+BC2=AB2等腰直角三角形ABC三邊長度之間存在什么關(guān)系嗎?Sp=AC2SQ=BC2SR=AB2勾股定理的初步認(rèn)識一講授新課上面三個(gè)正方形的面積之間有什么關(guān)系?做一做:觀察正方形瓷磚鋪成的地面.填一填:觀察右邊兩幅圖:完成下表(每個(gè)小正方形的面積為單位1).

A的面積B的面積C的面積左圖右圖4

?怎樣計(jì)算正方形C的面積呢?9

16

9

方法一:割方法二:補(bǔ)方法三:拼分割為四個(gè)直角三角形和一個(gè)小正方形.補(bǔ)成大正方形,用大正方形的面積減去四個(gè)直角三角形的面積.將幾個(gè)小塊拼成若干個(gè)小正方形,圖中兩塊紅色(或綠色)可拼成一個(gè)小正方形.分析表中數(shù)據(jù),你發(fā)現(xiàn)了什么?A的面積B的面積C的面積左圖4913右圖16925結(jié)論:以直角三角形兩直角邊為邊長的小正方形的面積的和,等于以斜邊為邊長的正方形的面積.

分別以5cm、12cm為直角三角形的直角邊作出一個(gè)直角三角形ABC,測量斜邊的長度,然后驗(yàn)證上述關(guān)系對這個(gè)直角三角形是否成立.13512ABC做一做幾何語言:∵在Rt△ABC中,∠C=90°,∴a2+b2=c2(勾股定理).aABCbc∟總結(jié)歸納定理揭示了直角三角形三邊之間的關(guān)系.

直角三角形兩直角邊的平方和等于斜邊的平方.如果a,b和c分別表示直角三角形的兩直角邊和斜邊,那么a2+b2=c2.勾股定理求下列直角三角形中未知邊的長:練一練8x17125x解:由勾股定理可得:82+x2=172即:x2=172-82

x=15解:由勾股定理可得:

52+122=x2即:x2=52+122

x=13

我們一起穿越回到2500年前,跟隨畢達(dá)哥拉斯再去他那位老朋友家做客,看到他朋友家用磚鋪成的地面(如下圖所示):ABC穿越畢達(dá)哥拉斯做客現(xiàn)場正方形A的面積正方形B的面積正方形C的面積+=一直角邊2另一直角邊2斜邊2+=知識鏈接例1已知∠ACB=90°,CD⊥AB,AC=3,BC=4.求CD的長.利用勾股定理進(jìn)行計(jì)算二典例精析解:由勾股定理可得,AB2=AC2+BC2=25,即AB=5.根據(jù)三角形面積公式,∴AC×BC=AB×CD.∴CD=.ADBC34方法總結(jié)

由直角三角形的面積求法可知直角三角形兩直角邊的積等于斜邊與斜邊上高的積,這個(gè)規(guī)律也稱“弦高公式”,它常與勾股定理聯(lián)合使用.例2

如圖,已知AD是△ABC的中線.求證:AB2+AC2=2(AD2+CD2).證明:如圖,過點(diǎn)A作AE⊥BC于點(diǎn)E.在Rt△ACE、Rt△ABE和Rt△ADE中,AB2=AE2+BE2,AC2=AE2+CE2,AE2=AD2-ED2,∴AB2+AC2=(AE2+BE2)+(AE2+CE2)=2AD2+DB2+DC2+2DE(DC-DB).又∵AD是△ABC的中線,∴BD=CD,∴AB2+AC2=2AD2+2DC2=2(AD2+CD2).E方法總結(jié)

構(gòu)造直角三角形,利用勾股定理把需要證明的線段聯(lián)系起來.一般地,涉及線段之間的平方關(guān)系問題時(shí),通常沿著這個(gè)思路去分析問題.解:當(dāng)高AD在△ABC內(nèi)部時(shí),如圖①.在Rt△ABD中,由勾股定理,得BD2=AB2-AD2=202-122=162,∴BD=16;在Rt△ACD中,由勾股定理,得CD2=AC2-AD2=152-122=81,∴CD=9.∴BC=BD+CD=25,∴△ABC的周長為25+20+15=60.例3

在△ABC中,AB=20,AC=15,AD為BC邊上的高,且AD=12,求△ABC的周長.題中未給出圖形,作高構(gòu)造直角三角形時(shí),易漏掉鈍角三角形的情況.如在本例題中,易只考慮高AD在△ABC內(nèi)的情形,忽視高AD在△ABC外的情形.當(dāng)高AD在△ABC外部時(shí),如圖②.同理可得BD=16,CD=9.∴BC=BD-CD=7,∴△ABC的周長為7+20+15=42.綜上所述,△ABC的周長為42或60.方法總結(jié)解析:因?yàn)锳E=BE,所以S△ABE=AE·BE=AE2.又因?yàn)锳E2+BE2=AB2,所以2AE2=AB2,所以S△ABE=AB2=;同理可得S△AHC+S△BCF=AC2+BC2.又因?yàn)锳C2+BC2=AB2,所以陰影部分的面積為AB2=.例4

如圖,以Rt△ABC的三邊長為斜邊分別向外作等腰直角三角形.若斜邊AB=3,則圖中△ABE的面積為________,陰影部分的面積為________.方法總結(jié)

求解與直角三角形三邊有關(guān)的圖形面積時(shí),要結(jié)合圖形想辦法把圖形的面積與直角三角形三邊的平方聯(lián)系起來,再利用勾股定理找到圖形面積之間的等量關(guān)系.求下列圖形中未知正方形的面積及未知邊的長度(口答):

已知直角三角形兩邊,求第三邊.練一練當(dāng)堂練習(xí)1.圖中陰影部分是一個(gè)正方形,則此正方形的面積為

.8cm10cm36cm22.

求下列圖中未知數(shù)x、y的值:解:由勾股定理可得:81+144=x2即:x2=225

x=15解:由勾股定理可得:

y2+144=169即:y2=25

y=53.在△ABC中,∠C=90°.(1)若a=6,b=8,則c=

.

(2)若c=13,b=12,則a=

.4.若直角三角形中,有兩邊長是3和4,則第三邊長的平方為()

A25B14C7D7或25105D5.一高為2.5米的木梯,架在高為2.4米的墻上(如圖),這時(shí)梯腳與墻的距離是多少?ABC解:在Rt△ABC中,根據(jù)勾股定理,得:BC2=AB2-AC2=2.52-2.42=0.49,所以BC=0.7.答:梯腳與墻的距離是0.7米.思維拓展S5=S1+S

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論