八年級數(shù)學(xué)上冊(蘇科版)第二章《實(shí)數(shù)》第1課時(shí):無理數(shù)的引入與實(shí)數(shù)的初步認(rèn)識教學(xué)設(shè)計(jì)_第1頁
八年級數(shù)學(xué)上冊(蘇科版)第二章《實(shí)數(shù)》第1課時(shí):無理數(shù)的引入與實(shí)數(shù)的初步認(rèn)識教學(xué)設(shè)計(jì)_第2頁
八年級數(shù)學(xué)上冊(蘇科版)第二章《實(shí)數(shù)》第1課時(shí):無理數(shù)的引入與實(shí)數(shù)的初步認(rèn)識教學(xué)設(shè)計(jì)_第3頁
八年級數(shù)學(xué)上冊(蘇科版)第二章《實(shí)數(shù)》第1課時(shí):無理數(shù)的引入與實(shí)數(shù)的初步認(rèn)識教學(xué)設(shè)計(jì)_第4頁
八年級數(shù)學(xué)上冊(蘇科版)第二章《實(shí)數(shù)》第1課時(shí):無理數(shù)的引入與實(shí)數(shù)的初步認(rèn)識教學(xué)設(shè)計(jì)_第5頁
已閱讀5頁,還剩36頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

八年級數(shù)學(xué)上冊(蘇科版)第二章《實(shí)數(shù)》第1課時(shí):無理數(shù)的引入與實(shí)數(shù)的初步認(rèn)識教學(xué)設(shè)計(jì)一、教學(xué)內(nèi)容分析從《義務(wù)教育數(shù)學(xué)課程標(biāo)準(zhǔn)(2022年版)》審視,本節(jié)課屬于“數(shù)與代數(shù)”領(lǐng)域,是學(xué)生數(shù)系擴(kuò)張歷程中的關(guān)鍵一步。知識技能圖譜上,它要求學(xué)生從已知的有理數(shù)出發(fā),經(jīng)歷無理數(shù)的發(fā)現(xiàn)過程,理解其“無限不循環(huán)”的本質(zhì)特征,并初步建立實(shí)數(shù)的概念框架,明確實(shí)數(shù)與數(shù)軸上的點(diǎn)一一對應(yīng)的關(guān)系。這既是前一階段“數(shù)的開方”知識的自然延伸,也為后續(xù)學(xué)習(xí)二次根式、函數(shù)、解析幾何等奠基,起著承上啟下的樞紐作用。過程方法路徑上,課標(biāo)強(qiáng)調(diào)通過具體實(shí)例,讓學(xué)生經(jīng)歷從具體到抽象、從特殊到一般的認(rèn)知過程,體驗(yàn)數(shù)學(xué)探究的基本方法。本課可設(shè)計(jì)“探究發(fā)現(xiàn)歸納應(yīng)用”的活動(dòng)鏈,引導(dǎo)學(xué)生像數(shù)學(xué)家一樣,通過操作、計(jì)算、質(zhì)疑、論證,主動(dòng)建構(gòu)無理數(shù)的概念,發(fā)展科學(xué)探究精神和嚴(yán)謹(jǐn)?shù)倪壿嬐评砟芰?。素養(yǎng)價(jià)值滲透方面,本課是培育學(xué)生數(shù)感、符號意識、推理能力和模型觀念的絕佳載體。無理數(shù)的發(fā)現(xiàn)過程蘊(yùn)含著數(shù)學(xué)發(fā)展中的理性精神與批判意識,數(shù)軸模型的構(gòu)建則深刻體現(xiàn)了“數(shù)形結(jié)合”這一核心思想,對于培養(yǎng)學(xué)生用數(shù)學(xué)的眼光觀察現(xiàn)實(shí)世界,用數(shù)學(xué)的思維思考現(xiàn)實(shí)世界具有重要意義。基于“以學(xué)定教”原則進(jìn)行學(xué)情研判。學(xué)生的已有基礎(chǔ)與障礙在于:他們已熟練掌握有理數(shù)的概念、運(yùn)算及在數(shù)軸上的表示,并初步接觸了平方根、立方根。然而,從“可表示為分?jǐn)?shù)”的有理數(shù)思維定勢,跨越到“無限不循環(huán)”的無理數(shù)認(rèn)知,存在顯著的認(rèn)知沖突和抽象思維挑戰(zhàn)。部分學(xué)生可能難以真正理解“無限不循環(huán)”的意涵,或?qū)?\sqrt{2}2<pathd="M95,702c2.7,0,7.17,2.7,13.5,8c5.8,5.3,9.5,10,9.5,14c0,2,0.3,3.3,1,4c1.3,2.7,23.83,20.7,67.5,54c44.2,33.3,65.8,50.3,66.5,51c1.3,1.3,3,2,5,2c4.7,0,8.7,3.3,12,10s173,378,173,378c0.7,0,35.3,71,104,213c68.7,142,137.5,285,206.5,429c69,144,104.5,217.7,106.5,221l00c5.3,9.3,12,14,20,14Hv40H845.2724s225.272,467,225.272,467s235,486,235,486c2.7,4.7,9,7,19,7c6,0,10,1,12,3s194,422,194,422s65,47,65,47zM83480Hv40hz">?這類數(shù)是否“真實(shí)存在”心存疑惑。針對此,教學(xué)調(diào)適策略是:充分利用幾何直觀(如拼圖、單位正方形對角線)和計(jì)算探索(如用計(jì)算器進(jìn)行2\sqrt{2}2<pathd="M95,702c2.7,0,7.17,2.7,13.5,8c5.8,5.3,9.5,10,9.5,14c0,2,0.3,3.3,1,4c1.3,2.7,23.83,20.7,67.5,54c44.2,33.3,65.8,50.3,66.5,51c1.3,1.3,3,2,5,2c4.7,0,8.7,3.3,12,10s173,378,173,378c0.7,0,35.3,71,104,213c68.7,142,137.5,285,206.5,429c69,144,104.5,217.7,106.5,221l00c5.3,9.3,12,14,20,14Hv40H845.2724s225.272,467,225.272,467s235,486,235,486c2.7,4.7,9,7,19,7c6,0,10,1,12,3s194,422,194,422s65,47,65,47zM83480Hv40hz">?的十進(jìn)制展開),化抽象為具體。在過程評估設(shè)計(jì)上,將通過追問(如“你能找到一個(gè)平方等于2的分?jǐn)?shù)嗎?”)、觀察小組討論、分析隨堂生成的錯(cuò)例等方式,動(dòng)態(tài)診斷學(xué)生的理解層次,并為不同認(rèn)知風(fēng)格的學(xué)生提供多元的表征支持(如幾何模型、數(shù)值計(jì)算、邏輯推理),實(shí)施分層引導(dǎo)。二、教學(xué)目標(biāo)知識目標(biāo):學(xué)生通過操作探究與推理分析,能準(zhǔn)確陳述無理數(shù)的定義(無限不循環(huán)小數(shù)),并列舉常見的無理數(shù)類型(如開方開不盡的數(shù)、圓周率π\(zhòng)piπ等);能清晰界定實(shí)數(shù)的概念,并初步對實(shí)數(shù)進(jìn)行合理分類;理解實(shí)數(shù)與數(shù)軸上的點(diǎn)之間的一一對應(yīng)關(guān)系。能力目標(biāo):學(xué)生能運(yùn)用計(jì)算、反證等方法,論證2\sqrt{2}2<pathd="M95,702c2.7,0,7.17,2.7,13.5,8c5.8,5.3,9.5,10,9.5,14c0,2,0.3,3.3,1,4c1.3,2.7,23.83,20.7,67.5,54c44.2,33.3,65.8,50.3,66.5,51c1.3,1.3,3,2,5,2c4.7,0,8.7,3.3,12,10s173,378,173,378c0.7,0,35.3,71,104,213c68.7,142,137.5,285,206.5,429c69,144,104.5,217.7,106.5,221l00c5.3,9.3,12,14,20,14Hv40H845.2724s225.272,467,225.272,467s235,486,235,486c2.7,4.7,9,7,19,7c6,0,10,1,12,3s194,422,194,422s65,47,65,47zM83480Hv40hz">?不是有理數(shù),發(fā)展邏輯推理和批判性思維能力;能通過構(gòu)造直角三角形等幾何方式,在數(shù)軸上找到表示無理數(shù)的點(diǎn),強(qiáng)化數(shù)形結(jié)合與動(dòng)手操作能力;能在具體情境中辨識無理數(shù),并初步進(jìn)行實(shí)數(shù)的大小比較。情感態(tài)度與價(jià)值觀目標(biāo):學(xué)生在重溫?zé)o理數(shù)發(fā)現(xiàn)史的過程中,感受數(shù)學(xué)知識源于實(shí)踐又不斷超越直觀的理性魅力,體會數(shù)學(xué)的確定性與發(fā)展性;在小組協(xié)作探究中,養(yǎng)成樂于分享、敢于質(zhì)疑、嚴(yán)謹(jǐn)求實(shí)的科學(xué)態(tài)度。科學(xué)(學(xué)科)思維目標(biāo):重點(diǎn)發(fā)展學(xué)生的抽象思維與演繹推理思維。通過從具體數(shù)值(如2\sqrt{2}2<pathd="M95,702c2.7,0,7.17,2.7,13.5,8c5.8,5.3,9.5,10,9.5,14c0,2,0.3,3.3,1,4c1.3,2.7,23.83,20.7,67.5,54c44.2,33.3,65.8,50.3,66.5,51c1.3,1.3,3,2,5,2c4.7,0,8.7,3.3,12,10s173,378,173,378c0.7,0,35.3,71,104,213c68.7,142,137.5,285,206.5,429c69,144,104.5,217.7,106.5,221l00c5.3,9.3,12,14,20,14Hv40H845.2724s225.272,467,225.272,467s235,486,235,486c2.7,4.7,9,7,19,7c6,0,10,1,12,3s194,422,194,422s65,47,65,47zM83480Hv40hz">?的計(jì)算結(jié)果)中抽象出“無限不循環(huán)”這一普遍屬性,形成無理數(shù)概念;通過“假設(shè)2\sqrt{2}2<pathd="M95,702c2.7,0,7.17,2.7,13.5,8c5.8,5.3,9.5,10,9.5,14c0,2,0.3,3.3,1,4c1.3,2.7,23.83,20.7,67.5,54c44.2,33.3,65.8,50.3,66.5,51c1.3,1.3,3,2,5,2c4.7,0,8.7,3.3,12,10s173,378,173,378c0.7,0,35.3,71,104,213c68.7,142,137.5,285,206.5,429c69,144,104.5,217.7,106.5,221l00c5.3,9.3,12,14,20,14Hv40H845.2724s225.272,467,225.272,467s235,486,235,486c2.7,4.7,9,7,19,7c6,0,10,1,12,3s194,422,194,422s65,47,65,47zM83480Hv40hz">?是有理數(shù)”導(dǎo)出矛盾,體驗(yàn)反證法的邏輯力量,提升思維的嚴(yán)密性。評價(jià)與元認(rèn)知目標(biāo):引導(dǎo)學(xué)生運(yùn)用“定義”作為標(biāo)尺,評價(jià)一個(gè)數(shù)是否為無理數(shù);在課堂小結(jié)環(huán)節(jié),鼓勵(lì)學(xué)生反思探索無理數(shù)概念時(shí)遇到的困難及克服策略,比較幾何探究與代數(shù)推理的不同路徑,提升對數(shù)學(xué)學(xué)習(xí)方法的元認(rèn)知水平。三、教學(xué)重點(diǎn)與難點(diǎn)教學(xué)重點(diǎn):無理數(shù)概念的建立。其確立依據(jù)在于,從課程標(biāo)準(zhǔn)看,無理數(shù)是實(shí)數(shù)概念形成的核心基石,是貫穿初等數(shù)學(xué)的“大概念”;從學(xué)科體系看,它是數(shù)系從有理數(shù)擴(kuò)張到實(shí)數(shù)的質(zhì)變點(diǎn),不理解無理數(shù),后續(xù)關(guān)于實(shí)數(shù)的所有運(yùn)算與性質(zhì)都將成為無源之水。從中考視角分析,對無理數(shù)概念的辨識與理解是基礎(chǔ)且高頻的考點(diǎn)。教學(xué)難點(diǎn):對“無限不循環(huán)小數(shù)”本質(zhì)的理解及2\sqrt{2}2<pathd="M95,702c2.7,0,7.17,2.7,13.5,8c5.8,5.3,9.5,10,9.5,14c0,2,0.3,3.3,1,4c1.3,2.7,23.83,20.7,67.5,54c44.2,33.3,65.8,50.3,66.5,51c1.3,1.3,3,2,5,2c4.7,0,8.7,3.3,12,10s173,378,173,378c0.7,0,35.3,71,104,213c68.7,142,137.5,285,206.5,429c69,144,104.5,217.7,106.5,221l00c5.3,9.3,12,14,20,14Hv40H845.2724s225.272,467,225.272,467s235,486,235,486c2.7,4.7,9,7,19,7c6,0,10,1,12,3s194,422,194,422s65,47,65,47zM83480Hv40hz">?是無理數(shù)的證明。其預(yù)設(shè)依據(jù)源于學(xué)情:學(xué)生首次接觸“無限”且“不循環(huán)”這種超越有限經(jīng)驗(yàn)的數(shù)學(xué)對象,認(rèn)知跨度大;證明2\sqrt{2}2<pathd="M95,702c2.7,0,7.17,2.7,13.5,8c5.8,5.3,9.5,10,9.5,14c0,2,0.3,3.3,1,4c1.3,2.7,23.83,20.7,67.5,54c44.2,33.3,65.8,50.3,66.5,51c1.3,1.3,3,2,5,2c4.7,0,8.7,3.3,12,10s173,378,173,378c0.7,0,35.3,71,104,213c68.7,142,137.5,285,206.5,429c69,144,104.5,217.7,106.5,221l00c5.3,9.3,12,14,20,14Hv40H845.2724s225.272,467,225.272,467s235,486,235,486c2.7,4.7,9,7,19,7c6,0,10,1,12,3s194,422,194,422s65,47,65,47zM83480Hv40hz">?不是有理數(shù)需要運(yùn)用反證法,邏輯鏈條較長,且涉及對“互質(zhì)”概念的靈活運(yùn)用,是思維上的難點(diǎn),也是作業(yè)和考試中的典型失分點(diǎn)。突破方向在于,先用計(jì)算器展示其“算不盡”的直觀,再用幾何拼圖引發(fā)認(rèn)知沖突,最后通過精巧設(shè)問引導(dǎo)學(xué)生一步步完成推理。四、教學(xué)準(zhǔn)備清單1.教師準(zhǔn)備1.1媒體與教具:多媒體課件(含無理數(shù)發(fā)現(xiàn)史微視頻、2\sqrt{2}2<pathd="M95,702c2.7,0,7.17,2.7,13.5,8c5.8,5.3,9.5,10,9.5,14c0,2,0.3,3.3,1,4c1.3,2.7,23.83,20.7,67.5,54c44.2,33.3,65.8,50.3,66.5,51c1.3,1.3,3,2,5,2c4.7,0,8.7,3.3,12,10s173,378,173,378c0.7,0,35.3,71,104,213c68.7,142,137.5,285,206.5,429c69,144,104.5,217.7,106.5,221l00c5.3,9.3,12,14,20,14Hv40H845.2724s225.272,467,225.272,467s235,486,235,486c2.7,4.7,9,7,19,7c6,0,10,1,12,3s194,422,194,422s65,47,65,47zM83480Hv40hz">?小數(shù)點(diǎn)后多位展示動(dòng)畫);幾何畫板動(dòng)態(tài)演示“在數(shù)軸上找點(diǎn)”;兩個(gè)全等的等腰直角三角形紙板。1.2學(xué)習(xí)材料:設(shè)計(jì)分層學(xué)習(xí)任務(wù)單(含探究引導(dǎo)、分層練習(xí)題);準(zhǔn)備實(shí)物投影儀用于展示學(xué)生作品。2.學(xué)生準(zhǔn)備2.1課前預(yù)習(xí):復(fù)習(xí)有理數(shù)的定義與分類;了解畢達(dá)哥拉斯學(xué)派與希帕索斯的故事(閱讀簡史材料)。2.2學(xué)具攜帶:計(jì)算器、直尺、圓規(guī)、練習(xí)本。五、教學(xué)過程第一、導(dǎo)入環(huán)節(jié)1.情境創(chuàng)設(shè)與認(rèn)知沖突1.1(教師展示兩個(gè)全等的等腰直角三角形)同學(xué)們,如果每個(gè)直角三角形的腰長都是1,那么拼成的這個(gè)正方形的面積是多少?(學(xué)生易答:2。)很好,面積是2。那么它的邊長呢?1.2我們設(shè)邊長為aaa,則有a2=2a^2=2a2=2。aaa是幾?你能找到一個(gè)確切的分?jǐn)?shù)或小數(shù)來表示它嗎?大家拿出計(jì)算器,試著算算2\sqrt{2}2<pathd="M95,702c2.7,0,7.17,2.7,13.5,8c5.8,5.3,9.5,10,9.5,14c0,2,0.3,3.3,1,4c1.3,2.7,23.83,20.7,67.5,54c44.2,33.3,65.8,50.3,66.5,51c1.3,1.3,3,2,5,2c4.7,0,8.7,3.3,12,10s173,378,173,378c0.7,0,35.3,71,104,213c68.7,142,137.5,285,206.5,429c69,144,104.5,217.7,106.5,221l00c5.3,9.3,12,14,20,14Hv40H845.2724s225.272,467,225.272,467s235,486,235,486c2.7,4.7,9,7,19,7c6,0,10,1,12,3s194,422,194,422s65,47,65,47zM83480Hv40hz">1.414213562......結(jié)果是1.414213562...而且好像永遠(yuǎn)算不完。)“老師,它是不是循環(huán)小數(shù)?我們多算幾位看看...”2.提出核心問題2.1大家發(fā)現(xiàn)了一個(gè)“怪?jǐn)?shù)”:它的平方等于2,但它本身卻寫不成一個(gè)有限小數(shù)或循環(huán)小數(shù)。它到底是不是一個(gè)“數(shù)”?在我們學(xué)過的有理數(shù)家族里,能找到它的位置嗎?今天,我們就一起來揭開這類神秘?cái)?shù)字的面紗。3.明晰學(xué)習(xí)路徑3.1本節(jié)課,我們將首先像一位偵探一樣,用推理證明2\sqrt{2}2<pathd="M95,702c2.7,0,7.17,2.7,13.5,8c5.8,5.3,9.5,10,9.5,14c0,2,0.3,3.3,1,4c1.3,2.7,23.83,20.7,67.5,54c44.2,33.3,65.8,50.3,66.5,51c1.3,1.3,3,2,5,2c4.7,0,8.7,3.3,12,10s173,378,173,378c0.7,0,35.3,71,104,213c68.7,142,137.5,285,206.5,429c69,144,104.5,217.7,106.5,221l00c5.3,9.3,12,14,20,14Hv40H845.2724s225.272,467,225.272,467s235,486,235,486c2.7,4.7,9,7,19,7c6,0,10,1,12,3s194,422,194,422s65,47,65,47zM83480Hv40hz">?不是有理數(shù);然后為這類“新數(shù)”正式命名——無理數(shù);最后,把有理數(shù)和無理數(shù)統(tǒng)合到一個(gè)更龐大的家族——實(shí)數(shù)中,并探索它們?nèi)绾卧跀?shù)軸上“安家落戶”。第二、新授環(huán)節(jié)任務(wù)一:追本溯源——證明√2不是有理數(shù)教師活動(dòng):首先,引導(dǎo)學(xué)生明確論證目標(biāo):證明2\sqrt{2}2<pathd="M95,702c2.7,0,7.17,2.7,13.5,8c5.8,5.3,9.5,10,9.5,14c0,2,0.3,3.3,1,4c1.3,2.7,23.83,20.7,67.5,54c44.2,33.3,65.8,50.3,66.5,51c1.3,1.3,3,2,5,2c4.7,0,8.7,3.3,12,10s173,378,173,378c0.7,0,35.3,71,104,213c68.7,142,137.5,285,206.5,429c69,144,104.5,217.7,106.5,221l00c5.3,9.3,12,14,20,14Hv40H845.2724s225.272,467,225.272,467s235,486,235,486c2.7,4.7,9,7,19,7c6,0,10,1,12,3s194,422,194,422s65,47,65,47zM83480Hv40hz">?不能表示為兩個(gè)整數(shù)之比(分?jǐn)?shù))。提出反證法思路:“我們先假設(shè)一個(gè)相反的情況成立,看看會導(dǎo)致什么結(jié)果?!睅ьI(lǐng)學(xué)生一步步書寫:假設(shè)2=pq\sqrt{2}=\frac{p}{q}2<pathd="M95,702c2.7,0,7.17,2.7,13.5,8c5.8,5.3,9.5,10,9.5,14c0,2,0.3,3.3,1,4c1.3,2.7,23.83,20.7,67.5,54c44.2,33.3,65.8,50.3,66.5,51c1.3,1.3,3,2,5,2c4.7,0,8.7,3.3,12,10s173,378,173,378c0.7,0,35.3,71,104,213c68.7,142,137.5,285,206.5,429c69,144,104.5,217.7,106.5,221l00c5.3,9.3,12,14,20,14Hv40H845.2724s225.272,467,225.272,467s235,486,235,486c2.7,4.7,9,7,19,7c6,0,10,1,12,3s194,422,194,422s65,47,65,47zM83480Hv40hz">?=qp?(p,q互質(zhì),且q≠0),兩邊平方得2=p2q22=\frac{p^2}{q^2}2=q2p2?,即p2=2q2p^2=2q^2p2=2q2。關(guān)鍵性提問:“從這個(gè)式子,你能判斷p的奇偶性嗎?為什么?”引導(dǎo)學(xué)生得出p是偶數(shù),設(shè)p=2k。代入得4k2=2q24k^2=2q^24k2=2q2,即q2=2k2q^2=2k^2q2=2k2。繼續(xù)追問:“現(xiàn)在,q又是什么數(shù)?這與我們最初的什么假設(shè)矛盾了?”最后總結(jié):“看,這個(gè)矛盾說明我們最初的假設(shè)‘√2是有理數(shù)’是錯(cuò)誤的?!睂W(xué)生活動(dòng):跟隨教師的引導(dǎo),理解反證法的邏輯起點(diǎn)。積極思考關(guān)鍵問題,嘗試推理p和q的奇偶性變化。在教師引導(dǎo)下,完成整個(gè)推導(dǎo)過程,并理解“互質(zhì)”假設(shè)在推導(dǎo)中的核心作用。最終理解矛盾所在,認(rèn)同“√2不能寫成分?jǐn)?shù)形式”的結(jié)論。即時(shí)評價(jià)標(biāo)準(zhǔn):1.邏輯跟隨:能否理解每一步推導(dǎo)的目的,而非機(jī)械記憶。2.關(guān)鍵點(diǎn)突破:能否獨(dú)立或經(jīng)提示后,分析出p為偶數(shù)是推理的轉(zhuǎn)折點(diǎn)。3.矛盾闡釋:能否清晰說出最終得出的矛盾是什么(p和q都含有因子2,與“互質(zhì)”假設(shè)矛盾)。形成知識、思維、方法清單:★核心結(jié)論:2\sqrt{2}2<pathd="M95,702c2.7,0,7.17,2.7,13.5,8c5.8,5.3,9.5,10,9.5,14c0,2,0.3,3.3,1,4c1.3,2.7,23.83,20.7,67.5,54c44.2,33.3,65.8,50.3,66.5,51c1.3,1.3,3,2,5,2c4.7,0,8.7,3.3,12,10s173,378,173,378c0.7,0,35.3,71,104,213c68.7,142,137.5,285,206.5,429c69,144,104.5,217.7,106.5,221l00c5.3,9.3,12,14,20,14Hv40H845.2724s225.272,467,225.272,467s235,486,235,486c2.7,4.7,9,7,19,7c6,0,10,1,12,3s194,422,194,422s65,47,65,47zM83480Hv40hz">?不是有理數(shù)。它不能表示為兩個(gè)整數(shù)的比?!P(guān)鍵方法:反證法。當(dāng)要證明某個(gè)結(jié)論“不是”什么時(shí),可以先假設(shè)“它是”,然后推導(dǎo)出邏輯矛盾,從而證明原結(jié)論?!袼季S要點(diǎn):論證依賴于“互質(zhì)”的設(shè)定和整數(shù)的奇偶性分析,體現(xiàn)了數(shù)學(xué)推理的嚴(yán)謹(jǐn)性。“同學(xué)們,這個(gè)證明就像一場精彩的辯論,我們設(shè)下‘圈套’,最終讓假設(shè)不攻自破?!比蝿?wù)二:概念生成——概括無理數(shù)的特征與定義教師活動(dòng):引導(dǎo)發(fā)散:“除了2\sqrt{2}2<pathd="M95,702c2.7,0,7.17,2.7,13.5,8c5.8,5.3,9.5,10,9.5,14c0,2,0.3,3.3,1,4c1.3,2.7,23.83,20.7,67.5,54c44.2,33.3,65.8,50.3,66.5,51c1.3,1.3,3,2,5,2c4.7,0,8.7,3.3,12,10s173,378,173,378c0.7,0,35.3,71,104,213c68.7,142,137.5,285,206.5,429c69,144,104.5,217.7,106.5,221l00c5.3,9.3,12,14,20,14Hv40H845.2724s225.272,467,225.272,467s235,486,235,486c2.7,4.7,9,7,19,7c6,0,10,1,12,3s194,422,194,422s65,47,65,47zM83480Hv40hz">?,還有哪些數(shù)也有這種‘算不盡、不循環(huán)’的特性?請舉例。”學(xué)生可能提到3\sqrt{3}3<pathd="M95,702c2.7,0,7.17,2.7,13.5,8c5.8,5.3,9.5,10,9.5,14c0,2,0.3,3.3,1,4c1.3,2.7,23.83,20.7,67.5,54c44.2,33.3,65.8,50.3,66.5,51c1.3,1.3,3,2,5,2c4.7,0,8.7,3.3,12,10s173,378,173,378c0.7,0,35.3,71,104,213c68.7,142,137.5,285,206.5,429c69,144,104.5,217.7,106.5,221l00c5.3,9.3,12,14,20,14Hv40H845.2724s225.272,467,225.272,467s235,486,235,486c2.7,4.7,9,7,19,7c6,0,10,1,12,3s194,422,194,422s65,47,65,47zM83480Hv40hz">?、圓周率π\(zhòng)piπ等。教師利用課件動(dòng)態(tài)展示3\sqrt{3}3<pathd="M95,702c2.7,0,7.17,2.7,13.5,8c5.8,5.3,9.5,10,9.5,14c0,2,0.3,3.3,1,4c1.3,2.7,23.83,20.7,67.5,54c44.2,33.3,65.8,50.3,66.5,51c1.3,1.3,3,2,5,2c4.7,0,8.7,3.3,12,10s173,378,173,378c0.7,0,35.3,71,104,213c68.7,142,137.5,285,206.5,429c69,144,104.5,217.7,106.5,221l00c5.3,9.3,12,14,20,14Hv40H845.2724s225.272,467,225.272,467s235,486,235,486c2.7,4.7,9,7,19,7c6,0,10,1,12,3s194,422,194,422s65,47,65,47zM83480Hv40hz">?、π\(zhòng)pi0.1010010001...0.1010010001...(每兩個(gè)1之間0依次多一個(gè))等數(shù)的十進(jìn)制展開。提問:“這些數(shù)和我們熟悉的有理數(shù)(有限小數(shù)、無限循環(huán)小數(shù))根本區(qū)別在哪里?”引導(dǎo)學(xué)生對比歸納,提煉出“無限不循環(huán)”這一核心特征。最后,給出無理數(shù)的規(guī)范定義:無限不循環(huán)小數(shù)叫做無理數(shù)。并強(qiáng)調(diào):“注意,是‘無限’且‘不循環(huán)’,兩個(gè)條件缺一不可?!睂W(xué)生活動(dòng):積極舉例,并觀察教師展示的各種例子。對比有理數(shù)的特征,小組討論后嘗試用自己的語言描述這類“新數(shù)”的特點(diǎn)。最終理解并記憶無理數(shù)的定義。嘗試判斷教師給出的新例子(如0.3?,1....)是否屬于無理數(shù)。即時(shí)評價(jià)標(biāo)準(zhǔn):1.舉例遷移:能否舉出除2\sqrt{2}2<pathd="M95,702c2.7,0,7.17,2.7,13.5,8c5.8,5.3,9.5,10,9.5,14c0,2,0.3,3.3,1,4c1.3,2.7,23.83,20.7,67.5,54c44.2,33.3,65.8,50.3,66.5,51c1.3,1.3,3,2,5,2c4.7,0,8.7,3.3,12,10s173,378,173,378c0.7,0,35.3,71,104,213c68.7,142,137.5,285,206.5,429c69,144,104.5,217.7,106.5,221l00c5.3,9.3,12,14,20,14Hv40H845.2724s225.272,467,225.272,467s235,486,235,486c2.7,4.7,9,7,19,7c6,0,10,1,12,3s194,422,194,422s65,47,65,47zM83480Hv40hz">?、π\(zhòng)piπ外的其他無理數(shù)實(shí)例。2.特征概括:能否準(zhǔn)確歸納出“無限不循環(huán)”這一本質(zhì)特征,而非僅停留在“算不盡”的直觀。3.概念辨析:能否運(yùn)用定義正確判斷簡單的小數(shù)是否為無理數(shù)。形成知識、思維、方法清單:★無理數(shù)定義:無限不循環(huán)小數(shù)?!癯R婎愋停海?)開方開不盡的數(shù),如2\sqrt{2}2<pathd="M95,702c2.7,0,7.17,2.7,13.5,8c5.8,5.3,9.5,10,9.5,14c0,2,0.3,3.3,1,4c1.3,2.7,23.83,20.7,67.5,54c44.2,33.3,65.8,50.3,66.5,51c1.3,1.3,3,2,5,2c4.7,0,8.7,3.3,12,10s173,378,173,378c0.7,0,35.3,71,104,213c68.7,142,137.5,285,206.5,429c69,144,104.5,217.7,106.5,221l00c5.3,9.3,12,14,20,14Hv40H845.2724s225.272,467,225.272,467s235,486,235,486c2.7,4.7,9,7,19,7c6,0,10,1,12,3s194,422,194,422s65,47,65,47zM83480Hv40hz">?,53\sqrt[3]{5}35<pathd="M95,702c2.7,0,7.17,2.7,13.5,8c5.8,5.3,9.5,10,9.5,14c0,2,0.3,3.3,1,4c1.3,2.7,23.83,20.7,67.5,54c44.2,33.3,65.8,50.3,66.5,51c1.3,1.3,3,2,5,2c4.7,0,8.7,3.3,12,10s173,378,173,378c0.7,0,35.3,71,104,213c68.7,142,137.5,285,206.5,429c69,144,104.5,217.7,106.5,221l00c5.3,9.3,12,14,20,14Hv40H845.2724s225.272,467,225.272,467s235,486,235,486c2.7,4.7,9,7,19,7c6,0,10,1,12,3s194,422,194,422s65,47,65,47zM83480Hv40hz">?;(2)圓周率π\(zhòng)piπ及某些含有π\(zhòng)piπ的數(shù);(3)人為構(gòu)造的無限不循環(huán)小數(shù),如0.1010010001...。▲概念辨析:判斷一個(gè)數(shù)是否為無理數(shù),關(guān)鍵看其小數(shù)部分是否“無限”且“不循環(huán)”。無限循環(huán)小數(shù)可以化成分?jǐn)?shù),是有理數(shù)?!按蠹矣涀。瑹o理數(shù)并不是‘沒有道理’的數(shù),而是‘不能表示為整數(shù)比的數(shù)’,這個(gè)名字有點(diǎn)歷史誤會。”任務(wù)三:體系建構(gòu)——初識實(shí)數(shù)及其分類教師活動(dòng):提問:“現(xiàn)在,我們認(rèn)識了有理數(shù)和無理數(shù)。它們之間是什么關(guān)系?能把我們學(xué)過的所有‘?dāng)?shù)’放在一起,給個(gè)總稱嗎?”引出實(shí)數(shù)的概念:有理數(shù)和無理數(shù)統(tǒng)稱為實(shí)數(shù)。通過韋恩圖或樹狀圖,與學(xué)生一起構(gòu)建實(shí)數(shù)的分類體系。強(qiáng)調(diào)分類標(biāo)準(zhǔn):按定義(是否為無限不循環(huán)小數(shù))分為有理數(shù)和無理數(shù);按符號分為正實(shí)數(shù)、0、負(fù)實(shí)數(shù)。進(jìn)行辨析練習(xí):“請判斷‘實(shí)數(shù)不是有理數(shù)就是無理數(shù)’、‘帶根號的數(shù)都是無理數(shù)’這些說法對嗎?”學(xué)生活動(dòng):理解“統(tǒng)稱”的含義,知曉實(shí)數(shù)是有理數(shù)和無理數(shù)的并集。參與分類圖的構(gòu)建,理清從屬關(guān)系。對辨析問題進(jìn)行思考和討論,加深對概念外延的理解,例如認(rèn)識到4=2\sqrt{4}=24<pathd="M95,702c2.7,0,7.17,2.7,13.5,8c5.8,5.3,9.5,10,9.5,14c0,2,0.3,3.3,1,4c1.3,2.7,23.83,20.7,67.5,54c44.2,33.3,65.8,50.3,66.5,51c1.3,1.3,3,2,5,2c4.7,0,8.7,3.3,12,10s173,378,173,378c0.7,0,35.3,71,104,213c68.7,142,137.5,285,206.5,429c69,144,104.5,217.7,106.5,221l00c5.3,9.3,12,14,20,14Hv40H845.2724s225.272,467,225.272,467s235,486,235,486c2.7,4.7,9,7,19,7c6,0,10,1,12,3s194,422,194,422s65,47,65,47zM83480Hv40hz">?=2是有理數(shù),從而明確“帶根號的數(shù)不一定無理”。即時(shí)評價(jià)標(biāo)準(zhǔn):1.體系理解:能否理解實(shí)數(shù)、有理數(shù)、無理數(shù)三個(gè)概念之間的包含關(guān)系。2.分類操作:能否根據(jù)定義對給定的實(shí)數(shù)(如?13\frac{1}{3}?31?,7\sqrt{7}7<pathd="M95,702c2.7,0,7.17,2.7,13.5,8c5.8,5.3,9.5,10,9.5,14c0,2,0.3,3.3,1,4c1.3,2.7,23.83,20.7,67.5,54c44.2,33.3,65.8,50.3,66.5,51c1.3,1.3,3,2,5,2c4.7,0,8.7,3.3,12,10s173,378,173,378c0.7,0,35.3,71,104,213c68.7,142,137.5,285,206.5,429c69,144,104.5,217.7,106.5,221l00c5.3,9.3,12,14,20,14Hv40H845.2724s225.272,467,225.272,467s235,486,235,486c2.7,4.7,9,7,19,7c6,0,10,1,12,3s194,422,194,422s65,47,65,47zM83480Hv40hz">?,0,3.14,π\(zhòng)piπ)進(jìn)行正確分類。3.誤區(qū)澄清:能否識別并解釋關(guān)于實(shí)數(shù)分類的常見錯(cuò)誤說法。形成知識、思維、方法清單:★實(shí)數(shù)概念:有理數(shù)和無理數(shù)統(tǒng)稱為實(shí)數(shù)。這是目前我們所學(xué)的最大的數(shù)集?!飳?shí)數(shù)分類(按定義):實(shí)數(shù)分為有理數(shù)(有限小數(shù)或無限循環(huán)小數(shù))和無理數(shù)(無限不循環(huán)小數(shù))?!裰匾吻澹号袛嘁粋€(gè)數(shù)是不是無理數(shù),必須化簡或分析到最后形式。例如,4\sqrt{4}4<pathd="M95,702c2.7,0,7.17,2.7,13.5,8c5.8,5.3,9.5,10,9.5,14c0,2,0.3,3.3,1,4c1.3,2.7,23.83,20.7,67.5,54c44.2,33.3,65.8,50.3,66.5,51c1.3,1.3,3,2,5,2c4.7,0,8.7,3.3,12,10s173,378,173,378c0.7,0,35.3,71,104,213c68.7,142,137.5,285,206.5,429c69,144,104.5,217.7,106.5,221l00c5.3,9.3,12,14,20,14Hv40H845.2724s225.272,467,225.272,467s235,486,235,486c2.7,4.7,9,7,19,7c6,0,10,1,12,3s194,422,194,422s65,47,65,47zM83480Hv40hz">?化簡后為2,是有理數(shù);而π2\frac{\pi}{2}2π?雖然含有π\(zhòng)piπ,但它本身就是一個(gè)確定的無限不循環(huán)小數(shù),也是無理數(shù)。“我們把數(shù)域從有理數(shù)‘?dāng)U軍’到了實(shí)數(shù),現(xiàn)在我們的‘武器庫’更加強(qiáng)大了!”任務(wù)四:形數(shù)統(tǒng)一——探究實(shí)數(shù)與數(shù)軸上的點(diǎn)教師活動(dòng):回顧舊知:“我們知道,每一個(gè)有理數(shù)都可以用數(shù)軸上的一個(gè)點(diǎn)來表示。那么,無理數(shù)呢?比如2\sqrt{2}2<pathd="M95,702c2.7,0,7.17,2.7,13.5,8c5.8,5.3,9.5,10,9.5,14c0,2,0.3,3.3,1,4c1.3,2.7,23.83,20.7,67.5,54c44.2,33.3,65.8,50.3,66.5,51c1.3,1.3,3,2,5,2c4.7,0,8.7,3.3,12,10s173,378,173,378c0.7,0,35.3,71,104,213c68.7,142,137.5,285,206.5,429c69,144,104.5,217.7,106.5,221l00c5.3,9.3,12,14,20,14Hv40H845.2724s225.272,467,225.272,467s235,486,235,486c2.7,4.7,9,7,19,7c6,0,10,1,12,3s194,422,194,422s65,47,65,47zM83480Hv40hz">?,能在數(shù)軸上找到它的位置嗎?”引導(dǎo)學(xué)生利用幾何直觀:構(gòu)造一個(gè)兩直角邊均為1的直角三角形,斜邊即為2\sqrt{2}2<pathd="M95,702c2.7,0,7.17,2.7,13.5,8c5.8,5.3,9.5,10,9.5,14c0,2,0.3,3.3,1,4c1.3,2.7,23.83,20.7,67.5,54c44.2,33.3,65.8,50.3,66.5,51c1.3,1.3,3,2,5,2c4.7,0,8.7,3.3,12,10s173,378,173,378c0.7,0,35.3,71,104,213c68.7,142,137.5,285,206.5,429c69,144,104.5,217.7,106.5,221l00c5.3,9.3,12,14,20,14Hv40H845.2724s225.272,467,225.272,467s235,486,235,486c2.7,4.7,9,7,19,7c6,0,10,1,12,3s194,422,194,422s65,47,65,47zM83480Hv40hz">?。演示如何以原點(diǎn)為圓心,斜邊長為半徑畫弧,與數(shù)軸正半軸的交點(diǎn)即表示2\sqrt{2}2<pathd="M95,702c2.7,0,7.17,2.7,13.5,8c5.8,5.3,9.5,10,9.5,14c0,2,0.3,3.3,1,4c1.3,2.7,23.83,20.7,67.5,54c44.2,33.3,65.8,50.3,66.5,51c1.3,1.3,3,2,5,2c4.7,0,8.7,3.3,12,10s173,378,173,378c0.7,0,35.3,71,104,213c68.7,142,137.5,285,206.5,429c69,144,104.5,217.7,106.5,221l00c5.3,9.3,12,14,20,14Hv40H845.2724s225.272,467,225.272,467s235,486,235,486c2.7,4.7,9,7,19,7c6,0,10,1,12,3s194,422,194,422s65,47,65,47zM83480Hv40hz">?。追問:“那?2\sqrt{2}?2<pathd="M95,702c2.7,0,7.17,2.7,13.5,8c5.8,5.3,9.5,10,9.5,14c0,2,0.3,3.3,1,4c1.3,2.7,23.83,20.7,67.5,54c44.2,33.3,65.8,50.3,66.5,51c1.3,1.3,3,2,5,2c4.7,0,8.7,3.3,12,10s173,378,173,378c0.7,0,35.3,71,104,213c68.7,142,137.5,285,206.5,429c69,144,104.5,217.7,106.5,221l00c5.3,9.3,12,14,20,14Hv40H845.2724s225.272,467,225.272,467s235,486,235,486c2.7,4.7,9,7,19,7c6,0,10,1,12,3s194,422,194,422s65,47,65,47zM83480Hv40hz">?呢?3\sqrt{3}3<pathd="M95,702c2.7,0,7.17,2.7,13.5,8c5.8,5.3,9.5,10,9.5,14c0,2,0.3,3.3,1,4c1.3,2.7,23.83,20.7,67.5,54c44.2,33.3,65.8,50.3,66.5,51c1.3,1.3,3,2,5,2c4.7,0,8.7,3.3,12,10s173,378,173,378c0.7,0,35.3,71,104,213c68.7,142,137.5,285,206.5,429c69,144,104.5,217.7,106.5,221l00c5.3,9.3,12,14,20,14Hv40H845.2724s225.272,467,225.272,467s235,486,235,486c2.7,4.7,9,7,19,7c6,0,10,1,12,3s194,422,194,422s65,47,65,47zM83480Hv40hz">?呢?”推廣結(jié)論:“事實(shí)上,每一個(gè)實(shí)數(shù)(無論有理還是無理)都可以用數(shù)軸上的一個(gè)點(diǎn)來表示;反過來,數(shù)軸上的每一個(gè)點(diǎn)都表示一個(gè)實(shí)數(shù)。”即實(shí)數(shù)與數(shù)軸上的點(diǎn)一一對應(yīng)。學(xué)生活動(dòng):觀察教師的幾何作圖演示,理解如何在數(shù)軸上“構(gòu)造”出表示2\sqrt{2}2<pathd="M95,702c2.7,0,7.17,2.7,13.5,8c5.8,5.3,9.5,10,9.5,14c0,2,0.3,3.3,1,4c1.3,2.7,23.83,20.7,67.5,54c44.2,33.3,65.8,50.3,66.5,51c1.3,1.3,3,2,5,2c4.7,0,8.7,3.3,12,10s173,378,173,378c0.7,0,35.3,71,104,213c68.7,142,137.5,285,206.5,429c69,144,104.5,217.7,106.5,221l00c5.3,9.3,12,14,20,14Hv40H845.2724s225.272,467,225.272,467s235,486,235,486c2.7,4.7,9,7,19,7c6,0,10,1,12,3s194,422,194,422s65,47,65,47zM83480Hv40hz">?的點(diǎn)。在任務(wù)單上嘗試模仿,找到表示2\sqrt{2}2<pathd="M95,702c2.7,0,7.17,2.7,13.5,8c5.8,5.3,9.5,10,9.5,14c0,2,0.3,3.3,1,4c1.3,2.7,23.83,20.7,67.5,54c44.2,33.3,65.8,50.3,66.5,51c1.3,1.3,3,2,5,2c4.7,0,8.7,3.3,12,10s173,378,173,378c0.7,0,35.3,71,104,213c68.7,142,137.5,285,206.5,429c69,144,104.5,217.7,106.5,221l00c5.3,9.3,12,14,20,14Hv40H845.2724s225.272,467,225.272,467s235,486,235,486c2.7,4.7,9,7,19,7c6,0,10,1,12,3s194,422,194,422s65,47,65,47zM83480Hv40hz">?的點(diǎn)。思考并回答教師關(guān)于負(fù)無理數(shù)和3\sqrt{3}3<pathd="M95,702c2.7,0,7.17,2.7,13.5,8c5.8,5.3,9.5,10,9.5,14c0,2,0.3,3.3,1,4c1.3,2.7,23.83,20.7,67.5,54c44.2,33.3,65.8,50.3,66.5,51c1.3,1.3,3,2,5,2c4.7,0,8.7,3.3,12,10s173,378,173,378c0.7,0,35.3,71,104,213c68.7,142,137.5,285,206.5,429c69,144,104.5,217.7,106.5,221l00c5.3,9.3,12,14,20,14Hv40H845.2724s225.272,467,225.272,467s235,486,235,486c2.7,4.7,9,7,19,7c6,0,10,1,12,3s194,422,194,422s65,47,65,47zM83480Hv40hz">?的提問。最終理解并認(rèn)同“一一對應(yīng)”的結(jié)論。即時(shí)評價(jià)標(biāo)準(zhǔn):1.操作理解:能否理解利用勾股定理在數(shù)軸上定位無理數(shù)的幾何原理。2.結(jié)論歸納:能否從特殊(2\sqrt{2}2<pathd="M95,702c2.7,0,7.17,2.7,13.5,8c5.8,5.3,9.5,10,9.5,14c0,2,0.3,3.3,1,4c1.3,2.7,23.83,20.7,67.5,54c44.2,33.3,65.8,50.3,66.5,51c1.3,1.3,3,2,5,2c4.7,0,8.7,3.3,12,10s173,378,173,378c0.7,0,35.3,71,104,213c68.7,142,137.5,285,206.5,429c69,144,104.5,217.7,106.5,221l00c5.3,9.3,12,14,20,14Hv40H845.2724s225.272,467,225.272,467s235,486,235,486c2.7,4.7,9,7,19,7c6,0,10,1,12,3s194,422,194,422s65,47,65,47zM83480Hv40hz">?)推廣到一般,說出實(shí)數(shù)與數(shù)軸點(diǎn)的一一對應(yīng)關(guān)系。3.逆向思維:當(dāng)看到數(shù)軸上一個(gè)任意點(diǎn)時(shí),能否意識到它一定對應(yīng)一個(gè)確定的實(shí)數(shù)(可能是有理數(shù),也可能是無理數(shù))。形成知識、思維、方法清單:★核心關(guān)系:實(shí)數(shù)與數(shù)軸上的點(diǎn)一一對應(yīng)。這是實(shí)數(shù)完備性的直觀體現(xiàn)。●幾何方法:利用勾股定理,可以在數(shù)軸上作出表示n\sqrt{n}n<pathd="M95,702c2.7,0,7.17,2.7,13.5,8c5.8,5.3,9.5,10,9.5,14c0,2,0.3,3.3,1,4c1.3,2.7,23.83,20.7,67.5,54c44.2,33.3,65.8,50.3,66.5,51c1.3,1.3,3,2,5,2c4.7,0,8.7,3.3,12,10s173,378,173,378c0.7,0,35.3,71,104,213c68.7,142,137.5,285,206.5,429c69,144,104.5,217.7,106.5,221l00c5.3,9.3,12,14,20,14Hv40H845.2724s225.272,467,225.272,467s235,486,235,486c2.7,4.7,9,7,19,7c6,0,10,1,12,3s194,422,194,422s65,47,65,47zM83480Hv40hz">?(n為正整數(shù))的點(diǎn)。這是“以形助數(shù)”的典范?!鴶?shù)學(xué)思想:數(shù)形結(jié)合思想。將抽象的數(shù)與直觀的圖形(數(shù)軸)聯(lián)系起來,使得實(shí)數(shù)的存在性和順序性變得可視、可感。“看,這個(gè)點(diǎn)(指著2\sqrt{2}2<pathd="M95,702c2.7,0,7.17,2.7,13.5,8c5.8,5.3,9.5,10,9.5,14c0,2,0.3,3.3,1,4c1.3,2.7,23.83,20.7,67.5,54c44.2,33.3,65.8,50.3,66.5,51c1.3,1.3,3,2,5,2c4.7,0,8.7,3.3,12,10s173,378,173,378c0.7,0,35.3,71,104,213c68.7,142,137.5,285,206.5,429c69,144,104.5,217.7,106.5,221l00c5.3,9.3,12,14,20,14Hv40H845.2724s225.272,467,225.272,467s235,486,235,486c2.7,4.7,9,7,19,7c6,0,10,1,12,3s194,422,194,422s65,47,65,47zM83480Hv40hz">?對應(yīng)的點(diǎn))雖然我們不能用有限小數(shù)寫出來,但它確確實(shí)實(shí)、獨(dú)一無二地存在于數(shù)軸上,這就是數(shù)學(xué)的確定性美?!钡谌?、當(dāng)堂鞏固訓(xùn)練設(shè)計(jì)核心:構(gòu)建分層、變式的訓(xùn)練體系,并提供即時(shí)反饋。基礎(chǔ)層(全體必做,直接應(yīng)用核心概念):1.判斷下列說法是否正確,并說明理由:(1)無理數(shù)都是無限小數(shù)。(2)無限小數(shù)都是無理數(shù)。(3)帶根號的數(shù)都是無理數(shù)。2.將下列各數(shù)填入相應(yīng)的集合:?52,9,0,3.14159,π,7,0.12˙3˙\frac{5}{2},\sqrt{9},0,3.14159,\pi,\sqrt{7},0.1\dot{2}\dot{3}?25?,9<pathd="M95,702c2.7,0,7.17,2.7,13.5,8c5.8,5.3,9.5,10,9.5,14c0,2,0.3,3.3,1,4c1.3,2.7,23.83,20.7,67.5,54c44.2,33.3,65.8,50.3,66.5,51c1.3,1.3,3,2,5,2c4.7,0,8.7,3.3,12,10s173,378,173,378c0.7,0,35.3,71,104,213c68.7,142,137.5,285,206.5,429c69,144,104.5,217.7,106.5,221l00c5.3,9.3,12,14,20,14Hv40H845.2724s225.272,467,225.272,467s235,486,235,486c2.7,4.7,9,7,19,7c6,0,10,1,12,3s194,422,194,422s65,47,65,47zM83480Hv40hz">?,0,3.14159,π,7<pathd="M95,702c2.7,0,7.17,2.7,13.5,8c5.8,5.3,9.5,10,9.5,14c0,2,0.3,3.3,1,4c1.3,2.7,23.83,20.7,67.5,54c44.2,33.3,65.8,50.3,66.5,51c1.3,1.3,3,2,5,2c4.7,0,8.7,3.3,12,10s173,378,173,378c0.7,0,35.3,71,104,213c68.7,142,137.5,285,206.5,429c69,144,104.5,217.7,106.5,221l00c5.3,9.3,12,14,20,14Hv40H845.2724s225.272,467,225.272,467s235,486,235,486c2.7,4.7,9,7,19,7c6,0,10,1,12,3s194,422,194,422s65,47,65,47zM83480Hv40hz">?,0.12˙3˙。有理數(shù)集合:{…};無理數(shù)集合:{…};正實(shí)數(shù)集合:{…}。綜合層(多數(shù)學(xué)生嘗試,在新情境中綜合運(yùn)用):3.如圖,數(shù)軸上點(diǎn)A表示的數(shù)可能是()A.5\sqrt{5}5<pathd="M95,702c2.7,0,7.17,2.7,13.5,8c5.8,5.3,9.5,10,9.5,14c0,2,0.3,3.3,1,4c1.3,2.7,23.83,20.7,67.5,54c44.2,33.3,65.8,50.3,66.5,51c1.3,1.3,3,2,5,2c4.7,0,8.7,3.3,12,10s173,378,173,378c0.7,0,35.3,71,104,213c68.7,142,137.5,285,206.5,429c69,144,104.5,217.7,106.5,221l00c5.3,9.3,12,14,20,14Hv40H845.2724s225.272,467,225.272,467s235,486,235,486c2.7,4.7,9,7,19,7c6,0,10,1,12,3s194,422,194,422s65,47,65,47zM83480Hv40hz">?B.10\sqrt{10}10<pathd="M95,702c2.7,0,7.17,2.7,13.5,8c5.8,5.3,9.5,10,9.5,14c0,2,0.3,3.3,1,4c1.3,2.7,23.83,20.7,67.5,54c44.2,33.3,65.8,50.3,66.5,51c1.3,1.3,3,2,5,2c4.7,0,8.7,3.3,12,10s173,378,173,378c0.7,0,35.3,71,104,213c68.7,142,137.5,285,206.5,429c69,144,104.5,217.7,106.5,221l00c5.3,9.3,12,14,20,14Hv40H845.2724s225.272,467,225.272,467s235,486,235,486c2.7,4.7,9,7,19,7c6,0,10,1,12,3s194,422,194,422s65,47,65,47zM83480Hv40hz">?C.15\sqrt{15}15<pathd="M95,702c2.7,0,7.17,2.7,13.5,8c5.8,5.3,9.5,10,9.5,14c0,2,0.3,3.3,1,4c1.3,2.7,23.83,20.7,67.5,54c44.2,33.3,65.8,50.3,66.5,51c1.3,1.3,3,2,5,2c4.7,0,8.7,3.3,12,10s173,378,173,378c0.7,0,35.3,71,104,213c68.7,142,137.5,285,206.5,429c69,144,104.5,217.7,106.5,221l00c5.3,9.3,12,14,20,14Hv40H845.2724s225.272,467,225.272,467s235,486,235,486c2.7,4.7,9,7,19,7c6,0,10,1,12,3s194,422,194,422s65,47,65,47zM83480Hv40hz">?D.20\sqrt{20}20<pathd="M95,702c2.7,0,7.17,2.7,13.5,8c5.8,5.3,9.5,10,9.5,14c0,2,0.3,3.3,1,4c1.3,2.7,23.83,20.7,67.5,54c44.2,33.3,65.8,50.3,66.5,51c1.3,1.3,3,2,5,2c4.7,0,8.7,3.3,12,10s173,378,173,378c0.7,0,35.3,71,104,213c68.7,142,137.5,285,206.5,429c69,144,104.5,217.7,106.5,221l00c5.3,9.3,12,14,20,14Hv40H845.2724s225.272,467,225.272,467s235,486,235,486c2.7,4.7,9,7,19,7c6,0,10,1,12,3s194,422,194,422s65,47,65,47zM83480Hv40hz">?(需估算大?。?.已知邊長為1的正方形的對角線長為2\sqrt{2}2<pathd="M95,702c2.7,0,7.17,2.7,13.5,8c5.8,5.3,9.5,10,9.5,14c0,2,0.3,3.3,1,4c1.3,2.7,23.83,20.7,67.5,54c44.2,33.3,65.8,50.3,66.5,51c1.3,1.3,3,2,5,2c4.7,0,8.7,3.3,12,10s173,378,173,378c0.7,0,35.3,71,104,213c68.7,142,137.5,285,206.5,429c69,144,104.5,217.7,106.5,221l00c5.3,9.3,12,14,20,14Hv40H845.2724s225.272,467,225.272,467s235,486,235,486c2.7,4.7,9,7,19,7c6,0,10,1,12,3s194,422,194,422s65,47,65,47zM83480Hv40hz">?,請利用這個(gè)結(jié)論,在數(shù)軸上準(zhǔn)確標(biāo)出表示2\sqrt{2}2<pathd="M95,702c2.7,0,7.17,2.7,13.5,8c5.8,5.3,9.5,10,9.5,14c0,2,0.3,3.3,1,4c1.3,2.7,23.83,20.7,67.5,54c44.2,33.3,65.8,50.3,66.5,51c1.3,1.3,3,2,5,2c4.7,0,8.7,3.3,12,10s173,378,173,378c0.7,0,35.3,71,104,213c68.7,142,137.5,285,206.5,429c69,144,104.5,217.7,106.5,221l00c5.3,9.3,12,14,20,14Hv40H845.2724s225.272,467,225.272,467s235,486,235,486c2.7,4.7,9,7,19,7c6,0,10,1,12,3s194,422,194,422s65,47,65,47zM83480Hv40hz">?和3\sqrt{3}3<pathd="M95,702c2.7,0,7.17,2.7,13.5,8c5.8,5.3,9.5,10,9.5,14c0,2,0.3,3.3,1,4c1.3,2.7,23.83,20.7,67.5,54c44.2,33.3,65.8,50.3,66.5,51c1.3,1.3,3,2,5,2c4.7,0,8.7,3.3,12,10s173,378,173,378c0.7,0,35.3,71,104,213c68.7,142,137.5,285,206.5,429c69,144,104.5,217.7,106.5,221l00c5.3,9.3,12,14,20,14Hv40H845.2724s225.272,467,225.272,467s235,486,235,486c2.7,4.7,9,7,19,7c6,0,10,1,12,3s194,422,194,422s65,47,65,47zM83480Hv40hz">?的點(diǎn)(要求保留作圖痕跡)。挑戰(zhàn)層(學(xué)有余力者選做,開放探究):5.我們知道4=2\sqrt{4}=24<pathd="M95,702c2.7,0,7.17,2.7,13.5,8c5.8,5.3,9.5,10,9.5,14c0,2,0.3,3.3,1,4c1.3,2.7,23.83,20.7,67.5,54c44.2,33.3,65.8,50.3,66.5,51c1.3,1.3,3,2,5,2c4.7,0,8.7,3.3,12,10s173,378,173,378c0.7,0,35.3,71,104,213c68.7,142,137.5,285,206.5,429c69,144,104.5,217.7,106.5,221l00c5.3,9.3,12,14,20,14Hv40H845.2724s225.272,467,225.272,467s235,486,235,486c2.7,4.7,9,7,19,7c6,0,10,1,12,3s194,422,194,422s65,47,65,47zM83480Hv40hz">?=2是有理數(shù),2\sqrt{2}2<pathd="M95,702c2.7,0,7.17,2.7,13.5,8c5.8,5.3,9.5,10,9.5,14c0,2,0.3,3.3,1,4c1.3,2.7,23.83,20.7,67.5,54c44.2,33.3,65.8,50.3,66.5,51c1.3,1.3,3,2,5,2c4.7,0,8.7,3.3,12,10s173,378,173,378c0.7,0,35.3,71,104,213c68.7,142,137.5,285,206.5,429c69,144,104.5,217.7,106.5,221l00c5.3,9.3,12,14,20,14Hv40H845.2724s225.272,467,225.272,467s235,486,235,486c2.7,4.7,9,7,19,7c6,0,10,1,12,3s194,422,194,422s65,47,65,47zM83480Hv40hz">?是無理數(shù)。那么,n\sqrt{n}n<pathd="M95,702c2.7,0,7.17,2.7,13.5,8c5.8,5.3,9.5,10,9.5,14c0,2,0.3,3.3,1,4c1.3,2.7,23.83,20.7,67.5,54c44.2,33.3,65.8,50.3,66.5,51c1.3,1.3,3,2,5,2c4.7,0,8.7,3.3,12,10s173,378,173,378c0.7,0,35.3,71,104,213c68.7,142,137.5,285,206.5,429c69,144,104.5,217.7,106.5,221l00c5.3,9.3,12,14,20,14Hv40H845.2724s225.272,467,225.272,467s235,486,235,486c2.7,4.7,9,7,19,7c6,0,10,1,12,3s194,422,194,422s65,47,65,47zM83480Hv40hz">?(n是正整數(shù))在什么情況下是有理數(shù)?什么情況下是無理數(shù)?你能提出一個(gè)猜想并嘗試解釋嗎?反饋機(jī)制:基礎(chǔ)層題目通過全班齊答或快速互查解決,教師點(diǎn)評易錯(cuò)點(diǎn)(如第1題第2小句)。綜合層題目請學(xué)生上臺展示第4題作圖過程,并講解第3題的估算策略,教師補(bǔ)充優(yōu)化。挑戰(zhàn)層題目作為思考題,邀請有想法的學(xué)生分享其猜想,教師給予肯定并引導(dǎo)課下繼續(xù)探究,不做統(tǒng)一要求?!暗?題把9\sqrt{9}9<pathd="M95,702c2.7,0,7.17,2.7,13.5,8c5.8,5.3,9.5,10,9.5,14c0,2,0.3,3.3,1,4c1.3,2.7,23.83,20.7,67.5,54c44.2,33.3,65.8,50.3,66.5,51c1.3,1.3,3,2,5,2c4.7,0,8.7,3.3,12,10s173,378,173,378c0.7,0,35.3,71,104,213c68.7,142,137.5,285,206.5,429c69,144,104.5,217.7,106.5,221l00c5.3,9.3,12,14,20,14Hv40H845.2724s225.272,467,225.272,467s235,486,235,486c2.7,4.7,9,7,19,7c6,0,10,1,12,3s194,422,194,422s65,47,65,47zM83480Hv40hz">?放進(jìn)無理數(shù)集合的同學(xué)要小心啦,化簡是第一步!”“誰來展示一下你是怎么在數(shù)軸上‘搭建’出3\sqrt{3}3<pathd="M95,702c2.7,0,7.17,2.7,13.5,8c5.8,5.3,9.5,10,9.5,14c0,2,0.3,3.3,1,4c1.3,2.7,23.83,20.7,67.5,54c44.2,33.3,65.8,50.3,66.5,51c1.3,1.3,3,2,5,2c4.7,0,8.7,3.3,12,10s173,378,173,378c0.7,0,35.3,71,104,213c68.7,142,137.5,285,206.5,429c69,144,104.5,217.7,106.5,221l00c5.3,9.3,12,14,20,14Hv40H845.2724s225.272,467,225.272,467s235,486,235,486c2.7,4.7,9,7,19,7c6,0,10,1,12,3s194,422,194,422s65,47,65,47zM83480Hv40hz">?的?哦,先構(gòu)造√2,再以它為直角邊…思路很清晰!”第四、課堂小結(jié)知識整合:引導(dǎo)學(xué)生以“實(shí)數(shù)”為中心,用思維導(dǎo)圖的形式回顧本節(jié)課的核心概念鏈:從證明2\sqrt{2}2<pathd="M95,702c2.7,0,7.17,2.7,13.5,8c5.8,5.3,9.5,10,9.5,14c0,2,0.3,3.3,1,4c1.3,2.7,23.83,20.7,67.5,54c44.2,33.3,65.8,50.3,66.5,51c1.3,1.3,3,2,5,2c4.7,0,8.7,3.3,12,10s173,378,173,378c0.7,0,35.3,71,104,213c68.7,142,137.5,285,206.5,429c69,144,104.5,217.7,106.5,221l00c5.3,9.3,12,14,20,14Hv40H845.2724s225.272,467,225.272,467s235,486,235,486c2.7,4.7,9,7,19,7c6,0,10,1,12,3s194,422,194,422s65,47,65,47zM83480Hv40hz">?不是有理數(shù)→發(fā)現(xiàn)并定義“無理數(shù)”(無限不循環(huán)小數(shù))→有理數(shù)與無理數(shù)“統(tǒng)稱”為實(shí)數(shù)→實(shí)數(shù)與數(shù)軸上的點(diǎn)“一一對應(yīng)”。鼓勵(lì)學(xué)生上臺繪制并講解。方法提煉:“今天我們用了哪些重要的數(shù)學(xué)方法攻克了‘無理數(shù)’這個(gè)堡壘?”師生共同回顧:反證法(邏輯推理)、從特殊到一般(歸納定義)、數(shù)形結(jié)合(在數(shù)軸上找點(diǎn))、估算與辨析。作業(yè)布置:必做題(鞏固基礎(chǔ)):1.完成課本對應(yīng)練習(xí),重點(diǎn)辨識無理數(shù)與實(shí)數(shù)分類。2.在數(shù)軸上標(biāo)出表示?2\sqrt{2}?2<pathd="M95,702c2.7,0,7.17,2.7,13.5,8c5.8,5.3,9.5,10,9.5,14c0,2,0.3,3.3,1,4c1.3,2.7,23.83,20.7,67.5,54c44.2,33.3,65.8,50.3,66.5,51c1.3,1.3,3,2,5,2c4.7,0,8.7,3.3,12,10s173,378,173,378c0.7,0,35.3,71,104,213c68.7,142,137.5,285,206.5,429c69,144,104.5,217.7,106.5,221l00c5.3,9.3,12,14,20,14Hv40H845.2724s225.272,467,225.272,467s235,486,235,486c2.7,4.7,9,7,19,7c6,0,10,1,12,3s194,422,194,422s65,47

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論