版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
安徽省合肥廬陽高級中學2026屆高一上數(shù)學期末質(zhì)量檢測試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.邏輯斯蒂函數(shù)fx=11+eA.函數(shù)fx的圖象關于點0,fB.函數(shù)fx的值域為(0,1C.不等式fx>D.存在實數(shù)a,使得關于x的方程fx2.在中,“”是“”的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件3.設正實數(shù)滿足,則的最大值為()A. B.C. D.4.已知函數(shù)為偶函數(shù),且在上單調(diào)遞增,,則不等式的解集為()A. B.C. D.5.設是兩條不同的直線,是兩個不同的平面,且,則下列說法正確的是A.若,則 B.若,則C.若,則 D.若,則6.對于直線的截距,下列說法正確的是A.在y軸上的截距是6 B.在x軸上的截距是6C.在x軸上的截距是3 D.在y軸上的截距是-37.中,設,,為中點,則A. B.C. D.8.直線(為實常數(shù))的傾斜角的大小是A B.C. D.9.已知某幾何體的三視圖如圖所示,則該幾何體的最長棱為()A.4 B.C. D.210.在直角梯形中,,,,分別為,的中點,以為圓心,為半徑的圓交于,點在弧上運動(如圖).若,其中,,則的取值范圍是A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.函數(shù)的值域是__________12.設函數(shù)f(x)=-x+2,則滿足f(x-1)+f(2x)>0的x的取值范圍是______.13.已知,,則______.14.若,是夾角為的兩個單位向量,則,的夾角為________.15.定義域為上的函數(shù)滿足,且當時,,若,則a的取值范圍是______16.已知圓柱的底面半徑為,高為2,若該圓柱的兩個底面的圓周都在一個球面上,則這個球的表面積為______三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知.(1)若,,求x的值;(2)若,求的最大值和最小值.18.如圖所示,某市政府決定在以政府大樓O為中心,正北方向和正東方向的馬路為邊界的扇形地域內(nèi)建造一個圖書館.為了充分利用這塊土地,并考慮與周邊環(huán)境協(xié)調(diào),設計要求該圖書館底面矩形的四個頂點都要在邊界上,圖書館的正面要朝市政府大樓.設扇形的半徑OM=R,∠MOP=45°,OB與OM之間的夾角為θ.(1)將圖書館底面矩形ABCD的面積S表示成θ的函數(shù).(2)若R=45m,求當θ為何值時,矩形ABCD的面積S最大?最大面積是多少?(?。?.414)19.已知函數(shù)的最小正周期為(1)求當為偶函數(shù)時的值;(2)若的圖象過點,求的單調(diào)遞增區(qū)間20.設函數(shù).(1)當時,求函數(shù)的零點;(2)當時,判斷的奇偶性并給予證明;(3)當時,恒成立,求m的最大值.21.求值或化簡:(1);(2).
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】A選項,代入f-x,計算fx+f-x=1和f0=12,可得對稱性;B選項,由【詳解】解:對于A:fx=11+e-x=ex1+ex,f-x對于B:fx=11+e-x,易知e-x>0,所以1+e對于C:由fx=11+e-x容易判斷,函數(shù)fx在R上單調(diào)遞增,且f對于D:因為函數(shù)fx在R上單調(diào)遞增,所以方程fx故選:D.2、C【解析】根據(jù)三角函數(shù)表,在三角形中,當時,即可求解【詳解】在三角形中,,故在三角形中,“”是“”的充分必要條件故選:C【點睛】本題考查充要條件的判斷,屬于基礎題3、C【解析】根據(jù)基本不等式可求得最值.【詳解】由基本不等式可得,即,解得,當且僅當,即,時,取等號,故選:C.4、A【解析】由題可得函數(shù)在上單調(diào)遞減,,且,再利用函數(shù)單調(diào)性即得.【詳解】因為函數(shù)為偶函數(shù)且在上單調(diào)逆增,,所以函數(shù)在上單調(diào)遞減,,且,所以,所以,解得或,即的取值范圍是.故選:A.5、A【解析】本道題目分別結合平面與平面平行判定與性質(zhì),平面與平面平行垂直判定與性質(zhì),即可得出答案.【詳解】A選項,結合一條直線與一平面垂直,則過該直線的平面垂直于這個平面,故正確;B選項,平面垂直,則位于兩平面的直線不一定垂直,故B錯誤;C選項,可能平行于與相交線,故錯誤;D選項,m與n可能異面,故錯誤【點睛】本道題目考查了平面與平面平行判定與性質(zhì),平面與平面平行垂直判定與性質(zhì),發(fā)揮空間想象能力,找出選項的漏洞,即可.6、A【解析】令,得y軸上的截距,令得x軸上的截距7、C【解析】分析:直接利用向量的三角形法則求.詳解:由題得,故答案為C.點睛:(1)本題主要考查向量的加法和減法法則,意在考查學生對這些基礎知識的掌握水平和轉化能力.(2)向量的加法法則:,向量的減法法則:.8、D【解析】計算出直線的斜率,再結合傾斜角的取值范圍可求得該直線的傾斜角.【詳解】設直線傾斜角為,直線的斜率為,所以,,則.故選:D.【點睛】本題考查直線傾斜角的計算,一般要求出直線的斜率,考查計算能力,屬于基礎題.9、B【解析】根據(jù)三視圖得到幾何體的直觀圖,然后結合圖中的數(shù)據(jù)計算出各棱的長度,進而可得最長棱【詳解】由三視圖可得,該幾何體是如圖所示的四棱錐,底面是邊長為2的正方形,側面是邊長為2的正三角形,且側面底面根據(jù)圖形可得四棱錐中的最長棱為和,結合所給數(shù)據(jù)可得,所以該四棱錐的最長棱為故選B【點睛】在由三視圖還原空間幾何體時,要結合三個視圖綜合考慮,根據(jù)三視圖表示的規(guī)則,空間幾何體的可見輪廓線在三視圖中為實線、不可見輪廓線在三視圖中為虛線.在還原空間幾何體實際形狀時,一般是以主視圖和俯視圖為主,結合左視圖進行綜合考慮.熟悉常見幾何體的三視圖,能由三視圖得到幾何體的直觀圖是解題關鍵.考查空間想象能力和計算能力10、D【解析】建立如圖所示的坐標系,則A(0,0),B(2,0),D(0,1),C(2,2),E(2,1),F(xiàn)(1,1.5),P(cosα,sinα)(0≤α),由λμ得,(cosα,sinα)=λ(2,1)+μ(﹣1,),λ,μ用參數(shù)α進行表示,利用輔助角公式化簡,即可得出結論【詳解】解:建立如圖所示的坐標系,則A(0,0),B(2,0),D(0,1),C(2,2),E(2,1),F(xiàn)(1,1.5),P(cosα,sinα)(0≤α),由λμ得,(cosα,sinα)=λ(2,1)+μ(﹣1,)?cosα=2λ﹣μ,sinα=λ?λ,∴6λ+μ=6()2(sinα+cosα)=2sin()∵,∴sin()∴2sin()∈[2,2],即6λ+μ的取值范圍是[2,2]故選D【點睛】本題考查平面向量的坐標運算,考查學生的計算能力,正確利用坐標系是關鍵.屬于中檔題二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】利用換元法,將變?yōu)椋缓罄萌呛愕茸儞Q,求三角函數(shù)的值域,可得答案.【詳解】由,得,可設,故,不妨取為銳角,而,時取最大值),,故函數(shù)的值域為,故答案為:.12、【解析】由函數(shù)的解析式可得,據(jù)此解不等式即可得答案【詳解】解:根據(jù)題意,函數(shù),則,若,即,解可得:,即的取值范圍為;故答案為.【點睛】本題考查函數(shù)的單調(diào)性的應用,涉及不等式的解法,屬于基礎題.13、【解析】把已知的兩個等式兩邊平方作和即可求得cos(α﹣β)的值【詳解】解:由已知sinα+sinβ=1①,cosα+cosβ=0②,①2+②2得:2+2cos(α﹣β)=1,∴cos(α﹣β),故答案為點睛】本題考查三角函數(shù)的化簡求值,考查同角三角函數(shù)基本關系式及兩角差的余弦,是基礎題14、【解析】由題得,,再利用向量的夾角公式求解即得解.【詳解】由題得,所以.所以,的夾角為.故答案為:【點睛】本題主要考查平面向量的模和數(shù)量積的計算,考查向量的夾角的計算,意在考查學生對這些知識的理解掌握水平.15、【解析】根據(jù),可得函數(shù)圖象關于直線對稱,當時,,可設,根據(jù),即可求解;【詳解】解:,的函數(shù)圖象關于直線對稱,函數(shù)關于y軸對稱,當時,,那么時,,可得,由,得解得:;故答案為.【點睛】本題考查了函數(shù)的性質(zhì)的應用及不等式的求解,屬于中檔題.16、【解析】直接利用圓柱的底面直徑,高、球體的直徑構成直角三角形其中為斜邊,利用勾股定理求出的值,然后利用球體的表面積公式可得出答案【詳解】設球的半徑為,由圓柱的性質(zhì)可得,圓柱的底面直徑,高、球體的直徑構成直角三角形其中為斜邊,因為圓柱的底面半徑為,高為2,所以,,因此,這個球的表面積為,故答案為【點睛】本題主要圓柱的幾何性質(zhì),考查球體表面積的計算,意在考查空間想象能力以及對基礎知識的理解與應用,屬于中等題三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)或;(2)的最大值和最小值分別為:,.【解析】(1)利用三角恒等變換化簡函數(shù),再利用給定的函數(shù)值及x的范圍求解作答.(2)求出函數(shù)相位的范圍,再結合正弦函數(shù)的性質(zhì)計算作答.【小問1詳解】依題意,,由,即得:,而,即,于是得或,解得或,所以x的值是或.【小問2詳解】由(1)知,,當時,,則當,即時,,當,即時,,所以的最大值和最小值分別為:,.18、(1)S=R2sin-R2,θ∈;(2)當θ=時,矩形ABCD面積S最大,最大面積為838.35m2.【解析】(1)設OM與BC的交點為F,用表示出,,,從而可得面積的表達式;(2)結合正弦函數(shù)的性質(zhì)求得最大值【詳解】解:(1)由題意,可知點M為PQ的中點,所以OM⊥AD.設OM與BC的交點為F,則BC=2Rsinθ,OF=Rcosθ,所以AB=OF-AD=Rcosθ-Rsinθ.所以S=AB·BC=2Rsinθ(Rcosθ-Rsinθ)=R2(2sinθcosθ-2sin2θ)=R2(sin2θ-1+cos2θ)=R2sin-R2,θ∈.(2)因為θ∈,所以2θ+∈,所以當2θ+,即θ=時,S有最大值.Smax=(-1)R2=(-1)×452=0.414×2025=838.35(m2).故當θ=時,矩形ABCD的面積S最大,最大面積為838.35m2.【點睛】關鍵點點睛:本題考查三角函數(shù)的應用,解題關鍵是利用表示出矩形的邊長,從而得矩形面積.利用三角函數(shù)恒等變換公式化函數(shù)為一個角的一個三角函數(shù)形式,然后結合正弦函數(shù)性質(zhì)求得最大值19、(1);(2).【解析】(1)由為偶函數(shù),求出的值,結合的范圍,即可求解;(2)由函數(shù)的周期求出值,將點代入解析式,結合的范圍,求出,根據(jù)正弦函數(shù)的單調(diào)遞增區(qū)間,整體代換,即可求出結論.【詳解】(1)當為偶函數(shù)時,,;(2)函數(shù)的最小正周期為,,當時,,將點代入得,,,單調(diào)遞增需滿足,,,所以單調(diào)遞增是;當時,,將點代入得,,的值不存在,綜上,的單調(diào)遞增區(qū)間.【點睛】本題考查函數(shù)的性質(zhì),利用三角函數(shù)值求角,要注意角的范圍,考查計算求解能力,不要忽略的正負分類討論,是本題的易錯點,屬于中檔題.20、(1)﹣3和1(2)奇函數(shù),證明見解析(3)3【解析】(1)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 股東財務制度管理
- 加工業(yè)企業(yè)財務制度
- 零售商業(yè)財務制度
- 農(nóng)技推廣財務制度
- 銷售人員差旅費財務制度
- 公司廉潔制度
- 施工工地現(xiàn)場文明管理制度(3篇)
- 計劃方案屬于什么管理制度(3篇)
- 公廁翻新施工方案(3篇)
- 充水打壓施工方案(3篇)
- 2026年湖南工業(yè)職業(yè)技術學院高職單招職業(yè)適應性測試備考題庫含答案解析
- 2026年益陽醫(yī)學高等專科學校單招職業(yè)技能筆試參考題庫含答案解析
- 國家自然基金形式審查培訓
- 2026馬年卡通特色期末評語(45條)
- 鍋爐房清潔衛(wèi)生制度模版(3篇)
- 踝關節(jié)骨折教學查房
- 食材配送消防安全應急預案
- 《跨境直播運營》課件-跨境電商交易平臺直播
- 《公園體系規(guī)劃導則》
- 人教部編版統(tǒng)編版八年級歷史上冊期末復習資料(復習提綱+思維導圖)講義
- 無人機系統(tǒng)數(shù)據(jù)鏈
評論
0/150
提交評論