廣西南寧市馬山縣金倫中學(xué)、武鳴縣華僑中學(xué)等四校2026屆高三上數(shù)學(xué)期末調(diào)研試題含解析_第1頁
廣西南寧市馬山縣金倫中學(xué)、武鳴縣華僑中學(xué)等四校2026屆高三上數(shù)學(xué)期末調(diào)研試題含解析_第2頁
廣西南寧市馬山縣金倫中學(xué)、武鳴縣華僑中學(xué)等四校2026屆高三上數(shù)學(xué)期末調(diào)研試題含解析_第3頁
廣西南寧市馬山縣金倫中學(xué)、武鳴縣華僑中學(xué)等四校2026屆高三上數(shù)學(xué)期末調(diào)研試題含解析_第4頁
廣西南寧市馬山縣金倫中學(xué)、武鳴縣華僑中學(xué)等四校2026屆高三上數(shù)學(xué)期末調(diào)研試題含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費(fèi)閱讀

付費(fèi)下載

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

廣西南寧市馬山縣金倫中學(xué)、武鳴縣華僑中學(xué)等四校2026屆高三上數(shù)學(xué)期末調(diào)研試題注意事項(xiàng)1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知函數(shù),為的零點(diǎn),為圖象的對稱軸,且在區(qū)間上單調(diào),則的最大值是()A. B. C. D.2.已知下列命題:①“”的否定是“”;②已知為兩個(gè)命題,若“”為假命題,則“”為真命題;③“”是“”的充分不必要條件;④“若,則且”的逆否命題為真命題.其中真命題的序號為()A.③④ B.①② C.①③ D.②④3.中,,為的中點(diǎn),,,則()A. B. C. D.24.執(zhí)行如圖所示的程序框圖,輸出的結(jié)果為()A. B.4 C. D.5.若,,,則()A. B.C. D.6.如圖,在四邊形中,,,,,,則的長度為()A. B.C. D.7.在平行六面體中,M為與的交點(diǎn),若,,則與相等的向量是()A. B. C. D.8.如圖所示,已知雙曲線的右焦點(diǎn)為,雙曲線的右支上一點(diǎn),它關(guān)于原點(diǎn)的對稱點(diǎn)為,滿足,且,則雙曲線的離心率是().A. B. C. D.9.已知數(shù)列中,,(),則等于()A. B. C. D.210.已知正項(xiàng)等比數(shù)列中,存在兩項(xiàng),使得,,則的最小值是()A. B. C. D.11.“中國剩余定理”又稱“孫子定理”,最早可見于中國南北朝時(shí)期的數(shù)學(xué)著作《孫子算經(jīng)》卷下第二十六題,叫做“物不知數(shù)”,原文如下:今有物不知其數(shù),三三數(shù)之剩二,五五數(shù)之剩三,七七數(shù)之剩二.問物幾何?現(xiàn)有這樣一個(gè)相關(guān)的問題:將1到2020這2020個(gè)自然數(shù)中被5除余3且被7除余2的數(shù)按照從小到大的順序排成一列,構(gòu)成一個(gè)數(shù)列,則該數(shù)列各項(xiàng)之和為()A.56383 B.57171 C.59189 D.6124212.《周易》是我國古代典籍,用“卦”描述了天地世間萬象變化.如圖是一個(gè)八卦圖,包含乾、坤、震、巽、坎、離、艮、兌八卦(每一卦由三個(gè)爻組成,其中“”表示一個(gè)陽爻,“”表示一個(gè)陰爻)若從八卦中任取兩卦,這兩卦的六個(gè)爻中恰有兩個(gè)陽爻的概率為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若函數(shù)(R,)滿足,且的最小值等于,則ω的值為___________.14.已知數(shù)列滿足對任意,若,則數(shù)列的通項(xiàng)公式________.15.若點(diǎn)在直線上,則的值等于______________.16.在直角坐標(biāo)系中,已知點(diǎn)和點(diǎn),若點(diǎn)在的平分線上,且,則向量的坐標(biāo)為___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在中,角的對邊分別為,已知.(1)求角的大??;(2)若,求的面積.18.(12分)如圖,在矩形中,,,點(diǎn)是邊上一點(diǎn),且,點(diǎn)是的中點(diǎn),將沿著折起,使點(diǎn)運(yùn)動到點(diǎn)處,且滿足.(1)證明:平面;(2)求二面角的余弦值.19.(12分)在平面直角坐標(biāo)系xOy中,橢圓C:x2a2(1)求橢圓C的方程;(2)假設(shè)直線l:y=kx+m與橢圓C交于A,B兩點(diǎn).①若A為橢圓的上頂點(diǎn),M為線段AB中點(diǎn),連接OM并延長交橢圓C于N,并且ON=62OM,求OB的長;②若原點(diǎn)O到直線l的距離為1,并且20.(12分)已知函數(shù),其中為自然對數(shù)的底數(shù),.(1)若曲線在點(diǎn)處的切線與直線平行,求的值;(2)若,問函數(shù)有無極值點(diǎn)?若有,請求出極值點(diǎn)的個(gè)數(shù);若沒有,請說明理由.21.(12分)已知數(shù)列滿足對任意都有,其前項(xiàng)和為,且是與的等比中項(xiàng),.(1)求數(shù)列的通項(xiàng)公式;(2)已知數(shù)列滿足,,設(shè)數(shù)列的前項(xiàng)和為,求大于的最小的正整數(shù)的值.22.(10分)在中,角的對邊分別為.已知,且.(1)求的值;(2)若的面積是,求的周長.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】

由題意可得,且,故有①,再根據(jù),求得②,由①②可得的最大值,檢驗(yàn)的這個(gè)值滿足條件.【詳解】解:函數(shù),,為的零點(diǎn),為圖象的對稱軸,,且,、,,即為奇數(shù)①.在,單調(diào),,②.由①②可得的最大值為1.當(dāng)時(shí),由為圖象的對稱軸,可得,,故有,,滿足為的零點(diǎn),同時(shí)也滿足滿足在上單調(diào),故為的最大值,故選:B.【點(diǎn)睛】本題主要考查正弦函數(shù)的圖象的特征,正弦函數(shù)的周期性以及它的圖象的對稱性,屬于中檔題.2、B【解析】

由命題的否定,復(fù)合命題的真假,充分必要條件,四種命題的關(guān)系對每個(gè)命題進(jìn)行判斷.【詳解】“”的否定是“”,正確;已知為兩個(gè)命題,若“”為假命題,則“”為真命題,正確;“”是“”的必要不充分條件,錯(cuò)誤;“若,則且”是假命題,則它的逆否命題為假命題,錯(cuò)誤.故選:B.【點(diǎn)睛】本題考查命題真假判斷,掌握四種命題的關(guān)系,復(fù)合命題的真假判斷,充分必要條件等概念是解題基礎(chǔ).3、D【解析】

在中,由正弦定理得;進(jìn)而得,在中,由余弦定理可得.【詳解】在中,由正弦定理得,得,又,所以為銳角,所以,,在中,由余弦定理可得,.故選:D【點(diǎn)睛】本題主要考查了正余弦定理的應(yīng)用,考查了學(xué)生的運(yùn)算求解能力.4、A【解析】

模擬執(zhí)行程序框圖,依次寫出每次循環(huán)得到的的值,當(dāng),,退出循環(huán),輸出結(jié)果.【詳解】程序運(yùn)行過程如下:,;,;,;,;,;,;,,退出循環(huán),輸出結(jié)果為,故選:A.【點(diǎn)睛】該題考查的是有關(guān)程序框圖的問題,涉及到的知識點(diǎn)有判斷程序框圖輸出結(jié)果,屬于基礎(chǔ)題目.5、C【解析】

利用指數(shù)函數(shù)和對數(shù)函數(shù)的單調(diào)性比較、、三個(gè)數(shù)與和的大小關(guān)系,進(jìn)而可得出、、三個(gè)數(shù)的大小關(guān)系.【詳解】對數(shù)函數(shù)為上的增函數(shù),則,即;指數(shù)函數(shù)為上的增函數(shù),則;指數(shù)函數(shù)為上的減函數(shù),則.綜上所述,.故選:C.【點(diǎn)睛】本題考查指數(shù)冪與對數(shù)式的大小比較,一般利用指數(shù)函數(shù)和對數(shù)函數(shù)的單調(diào)性結(jié)合中間值法來比較,考查推理能力,屬于基礎(chǔ)題.6、D【解析】

設(shè),在中,由余弦定理得,從而求得,再由由正弦定理得,求得,然后在中,用余弦定理求解.【詳解】設(shè),在中,由余弦定理得,則,從而,由正弦定理得,即,從而,在中,由余弦定理得:,則.故選:D【點(diǎn)睛】本題主要考查正弦定理和余弦定理的應(yīng)用,還考查了數(shù)形結(jié)合的思想和運(yùn)算求解的能力,屬于中檔題.7、D【解析】

根據(jù)空間向量的線性運(yùn)算,用作基底表示即可得解.【詳解】根據(jù)空間向量的線性運(yùn)算可知因?yàn)?,則即,故選:D.【點(diǎn)睛】本題考查了空間向量的線性運(yùn)算,用基底表示向量,屬于基礎(chǔ)題.8、C【解析】

易得,,又,平方計(jì)算即可得到答案.【詳解】設(shè)雙曲線C的左焦點(diǎn)為E,易得為平行四邊形,所以,又,故,,,所以,即,故離心率為.故選:C.【點(diǎn)睛】本題考查求雙曲線離心率的問題,關(guān)鍵是建立的方程或不等關(guān)系,是一道中檔題.9、A【解析】

分別代值計(jì)算可得,觀察可得數(shù)列是以3為周期的周期數(shù)列,問題得以解決.【詳解】解:∵,(),

,

,

…,

∴數(shù)列是以3為周期的周期數(shù)列,

,

故選:A.【點(diǎn)睛】本題考查數(shù)列的周期性和運(yùn)用:求數(shù)列中的項(xiàng),考查運(yùn)算能力,屬于基礎(chǔ)題.10、C【解析】

由已知求出等比數(shù)列的公比,進(jìn)而求出,嘗試用基本不等式,但取不到等號,所以考慮直接取的值代入比較即可.【詳解】,,或(舍).,,.當(dāng),時(shí);當(dāng),時(shí);當(dāng),時(shí),,所以最小值為.故選:C.【點(diǎn)睛】本題考查等比數(shù)列通項(xiàng)公式基本量的計(jì)算及最小值,屬于基礎(chǔ)題.11、C【解析】

根據(jù)“被5除余3且被7除余2的正整數(shù)”,可得這些數(shù)構(gòu)成等差數(shù)列,然后根據(jù)等差數(shù)列的前項(xiàng)和公式,可得結(jié)果.【詳解】被5除余3且被7除余2的正整數(shù)構(gòu)成首項(xiàng)為23,公差為的等差數(shù)列,記數(shù)列則令,解得.故該數(shù)列各項(xiàng)之和為.故選:C.【點(diǎn)睛】本題考查等差數(shù)列的應(yīng)用,屬基礎(chǔ)題。12、C【解析】

分類討論,僅有一個(gè)陽爻的有坎、艮、震三卦,從中取兩卦;從僅有兩個(gè)陽爻的有巽、離、兌三卦中取一個(gè),再取沒有陽爻的坤卦,計(jì)算滿足條件的種數(shù),利用古典概型即得解.【詳解】由圖可知,僅有一個(gè)陽爻的有坎、艮、震三卦,從中取兩卦滿足條件,其種數(shù)是;僅有兩個(gè)陽爻的有巽、離、兌三卦,沒有陽爻的是坤卦,此時(shí)取兩卦滿足條件的種數(shù)是,于是所求的概率.故選:C【點(diǎn)睛】本題考查了古典概型的應(yīng)用,考查了學(xué)生綜合分析,分類討論,數(shù)學(xué)運(yùn)算的能力,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、1【解析】

利用輔助角公式化簡可得,由題可分析的最小值等于表示相鄰的一個(gè)對稱中心與一個(gè)對稱軸的距離為,進(jìn)而求解即可.【詳解】由題,,因?yàn)?,且的最小值等于,即相鄰的一個(gè)對稱中心與一個(gè)對稱軸的距離為,所以,即,所以,故答案為:1【點(diǎn)睛】本題考查正弦型函數(shù)的對稱性的應(yīng)用,考查三角函數(shù)的化簡.14、【解析】

由可得,利用等比數(shù)列的通項(xiàng)公式可得,再利用累加法求和與等比數(shù)列的求和公式,即可得出結(jié)論.【詳解】由,得,數(shù)列是等比數(shù)列,首項(xiàng)為2,公比為2,,,,,滿足上式,.故答案為:.【點(diǎn)睛】本題考查數(shù)列的通項(xiàng)公式,遞推公式轉(zhuǎn)化為等比數(shù)列是解題的關(guān)鍵,利用累加法求通項(xiàng)公式,屬于中檔題.15、【解析】

根據(jù)題意可得,再由,即可得到結(jié)論.【詳解】由題意,得,又,解得,當(dāng)時(shí),則,此時(shí);當(dāng)時(shí),則,此時(shí),綜上,.故答案為:.【點(diǎn)睛】本題考查誘導(dǎo)公式和同角的三角函數(shù)的關(guān)系,考查計(jì)算能力,屬于基礎(chǔ)題.16、【解析】

點(diǎn)在的平分線可知與向量共線,利用線性運(yùn)算求解即可.【詳解】因?yàn)辄c(diǎn)在的平線上,所以存在使,而,可解得,所以,故答案為:【點(diǎn)睛】本題主要考查了向量的線性運(yùn)算,利用向量的坐標(biāo)求向量的模,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】

(1)利用正弦定理邊化角,再利用二倍角的正弦公式與正弦的和角公式化簡求解即可.(2)由(1)有,根據(jù)正弦定理可得,進(jìn)而求得的值,再根據(jù)三角形的面積公式求解即可.【詳解】(1)由,得,得,由正弦定理得,顯然,同時(shí)除以,得.所以.所以.顯然,所以,解得.又,所以.(2)若,由正弦定理得,得,解得.又,所以.【點(diǎn)睛】本題主要考查了正余弦定理與面積公式在解三角形中的運(yùn)用,需要根據(jù)題意用正弦定理進(jìn)行邊角互化,再根據(jù)三角恒等變換進(jìn)行化簡求解等.屬于中檔題.18、(1)見解析;(2)【解析】

(1)取的中點(diǎn),連接,,由,進(jìn)而,由,得.進(jìn)而平面,進(jìn)而結(jié)論可得證(2)(方法一)過點(diǎn)作的平行線交于點(diǎn),以點(diǎn)為坐標(biāo)原點(diǎn),所在直線分別為軸、軸、軸建立如圖所示的空間直角坐標(biāo)系,求得平面平面的法向量,由二面角公式求解即可(方法二)取的中點(diǎn),上的點(diǎn),使,連接,得,,得二面角的平面角為,再求解即可【詳解】(1)證明:取的中點(diǎn),連接,,由已知得,所以,又點(diǎn)是的中點(diǎn),所以.因?yàn)?,點(diǎn)是線段的中點(diǎn),所以.又因?yàn)?,所以,從而平面,所以,又,不平行,所以平?(2)(方法一)由(1)知,過點(diǎn)作的平行線交于點(diǎn),以點(diǎn)為坐標(biāo)原點(diǎn),所在直線分別為軸、軸、軸建立如圖所示的空間直角坐標(biāo)系,則點(diǎn),,,,所以,,.設(shè)平面的法向量為,由,得,令,得.同理,設(shè)平面的法向量為,由,得,令,得.所以二面角的余弦值為.(方法二)取的中點(diǎn),上的點(diǎn),使,連接,易知,.由(1)得,所以平面,所以,又,所以平面,所以二面角的平面角為.又計(jì)算得,,,所以.【點(diǎn)睛】本題考查線面垂直的判定,考查空間向量求二面角,考查空間想象及計(jì)算能力,是中檔題19、(1)x22+y2【解析】

(1)根據(jù)橢圓的幾何性質(zhì)可得到a2,b2;(2)聯(lián)立直線和橢圓,利用弦長公式可求得弦長AB,利用點(diǎn)到直線的距離公式求得原點(diǎn)到直線l的距離,從而可求得三角形面積,再用單調(diào)性求最值可得值域.【詳解】(1)因?yàn)閮山裹c(diǎn)與短軸的一個(gè)頂點(diǎn)的連線構(gòu)成等腰直角三角形,所以a=2又由右準(zhǔn)線方程為x=2,得到a2解得a=2,c=1,所以所以,橢圓C的方程為x2(2)①設(shè)B(x1,y1∵ON=6因?yàn)辄c(diǎn)B,N都在橢圓上,所以x122+y12所以O(shè)B=x②由原點(diǎn)O到直線l的距離為1,得|m|1+k2聯(lián)立直線l的方程與橢圓C的方程:y=kx+mx2設(shè)A(x1,y1OA=(1+k2)所以k△OAB的面積S==1因?yàn)镾=2λ(1-λ)在[并且當(dāng)λ=45時(shí),S=225所以△OAB的面積S的范圍為[10【點(diǎn)睛】圓錐曲線中最值與范圍問題的常見求法:(1)幾何法:若題目的條件和結(jié)論能明顯體現(xiàn)幾何特征和意義,則考慮利用圖形性質(zhì)來解決;(2)代數(shù)法:若題目的條件和結(jié)論能體現(xiàn)一種明確的函數(shù)關(guān)系,則可首先建立目標(biāo)函數(shù),再求這個(gè)函數(shù)的最值.在利用代數(shù)法解決最值與范圍問題時(shí)常從以下幾個(gè)方面考慮:①利用判別式來構(gòu)造不等關(guān)系,從而確定參數(shù)的取值范圍;②利用隱含或已知的不等關(guān)系建立不等式,從而求出參數(shù)的取值范圍;③利用基本不等式求出參數(shù)的取值范圍;④利用函數(shù)的值域的求法,確定參數(shù)的取值范圍.20、(1)(2)沒有,理由見解析【解析】

(1)求導(dǎo),研究函數(shù)在x=0處的導(dǎo)數(shù),等于切線斜率,即得解;(2)對f(x)求導(dǎo),構(gòu)造,可證得,得到,即得解【詳解】(1)由題意得,∵曲線在點(diǎn)處的切線與直線平行,∴切線的斜率為,解得.(2)當(dāng)時(shí),,,設(shè),則,則函數(shù)在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增,又函數(shù),故恒成立,∴函數(shù)在定義域內(nèi)單調(diào)遞增,函數(shù)不存在極值點(diǎn).【點(diǎn)睛】本題考查了導(dǎo)數(shù)在切線問題和函數(shù)極值問題中的應(yīng)用,考查了學(xué)生綜合分

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論