江西省南昌市新建縣第一中學(xué)2026屆高二數(shù)學(xué)第一學(xué)期期末考試試題含解析_第1頁
江西省南昌市新建縣第一中學(xué)2026屆高二數(shù)學(xué)第一學(xué)期期末考試試題含解析_第2頁
江西省南昌市新建縣第一中學(xué)2026屆高二數(shù)學(xué)第一學(xué)期期末考試試題含解析_第3頁
江西省南昌市新建縣第一中學(xué)2026屆高二數(shù)學(xué)第一學(xué)期期末考試試題含解析_第4頁
江西省南昌市新建縣第一中學(xué)2026屆高二數(shù)學(xué)第一學(xué)期期末考試試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

付費下載

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

江西省南昌市新建縣第一中學(xué)2026屆高二數(shù)學(xué)第一學(xué)期期末考試試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知數(shù)列滿足,,.設(shè),若對于,都有恒成立,則最大值為A.3 B.4C.7 D.92.雙曲線:(,)的左、右焦點分別為、,點在雙曲線上,,,則的離心率為()A. B.2C. D.3.圓與圓的位置關(guān)系是()A.相離 B.內(nèi)含C.相切 D.相交4.設(shè)的內(nèi)角的對邊分別為的面積,則()A. B.C. D.5.正數(shù)a,b滿足,若不等式對任意實數(shù)x恒成立,則實數(shù)m的取值范圍是A. B.C. D.6.橢圓的焦點坐標(biāo)為()A.和 B.和C.和 D.和7.已知實數(shù)a,b滿足,則下列不等式中恒成立的是()A. B.C. D.8.在空間直角坐標(biāo)系下,點關(guān)于軸對稱的點的坐標(biāo)為()A. B.C. D.9.已知函數(shù)的圖象如圖所示,則其導(dǎo)函數(shù)的圖象可能是()A. B.C. D.10.從裝有2個紅球和2個白球的口袋內(nèi)任取2個球,那么互斥而不對立的兩個事件是()A.“至少有1個白球”和“都是紅球”B.“至少有2個白球”和“至多有1個紅球”C.“恰有1個白球”和“恰有2個白球”D.“至多有1個白球”和“都是紅球”11.執(zhí)行如圖所示的程序框圖,若輸入的的值為3,則輸出的的值為()A.3 B.6C.9 D.1212.我國古代數(shù)學(xué)著作《九章算術(shù)》有如下問題:“今有金箠,長五尺,斬本一尺,重四斤,斬末一尺,重二斤”意思是:“現(xiàn)有一根金杖,長5尺,頭部1尺,重4斤;尾部1尺,重2斤;若該金杖從頭到尾每一尺重量構(gòu)成等差數(shù)列,其中重量為,則的值為()A.4 B.12C.15 D.18二、填空題:本題共4小題,每小題5分,共20分。13.函數(shù)的圖象在點處的切線的方程是______.14.已知直線與雙曲線交于兩點,則該雙曲線的離心率的取值范圍是______15.命題“若,則二元一次不等式表示直線的右上方區(qū)域(包含邊界)”的條件:_________,結(jié)論:_____________,它是_________命題(填“真”或“假”).16.已知等比數(shù)列的前項和為,若,,則______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在梯形中,,,四邊形為矩形,且平面,.(1)求證:平面;(2)點在線段含端點上運動,當(dāng)點在什么位置時,平面與平面所成銳二面角最大,并求此時二面角的余弦值.18.(12分)如圖,直四棱柱的底面是菱形,,,直線與平面ABCD所成角的正弦值為.E,F(xiàn)分別為、的中點.(1)求證:平面BED;(2)求直線與平面FAC所成角的正弦值.19.(12分)已知是等差數(shù)列,是各項都為正數(shù)的等比數(shù)列,,再從①;②;③這三個條件中選擇___________,___________兩個作為已知.(1)求數(shù)列的通項公式;(2)求數(shù)列的前項和.20.(12分)求滿足下列條件的圓錐曲線方程的標(biāo)準(zhǔn)方程.(1)經(jīng)過點,兩點的橢圓;(2)與雙曲線-=1有相同的漸近線且經(jīng)過點的雙曲線.21.(12分)總書記指出:“我們既要綠水青山,也要金山銀山.”新能源汽車環(huán)保、節(jié)能,以電代油,減少排放,既符合我國的國情,也代表了世界汽車產(chǎn)業(yè)發(fā)展的方向.工業(yè)部表示,到2026屆中國的汽車總銷量將達到3500萬輛,并希望新能源汽車至少占總銷量的五分之一.江蘇某新能源公司年初購入一批新能源汽車充電樁,每臺16200元,第一年每臺設(shè)備的維修保養(yǎng)費用為1100元,以后每年增加400元,每臺充電樁每年可給公司收益8100元(1)每臺充電樁第幾年開始獲利?(2)每臺充電樁在第幾年時,年平均利潤最大22.(10分)【閱讀材料1】我們在研究兩個變量之間的相關(guān)關(guān)系時,往往先選取若干個樣本點(),(),……,(),將樣本點畫在平面直角坐標(biāo)系內(nèi),就得到樣本的散點圖.觀察散點圖,如果所有樣本點都落在某一條直線附近,變量之間就具有線性相關(guān)關(guān)系,如果所有的樣本點都落在某一非線性函數(shù)圖象附近,變量之間就有非線性相關(guān)關(guān)系.在統(tǒng)計學(xué)中經(jīng)常選擇線性或非線性(函數(shù))回歸模型來刻畫相關(guān)關(guān)系,并且可以用適當(dāng)?shù)姆椒ㄇ蟪龌貧w模型的方程,還常用相關(guān)指數(shù)R2來刻畫回歸的效果,相關(guān)指數(shù)R2的計算公式為:當(dāng)R2越大時,回歸方程的擬合效果越好;當(dāng)R2越小時,回歸方程的擬合效果越差,R2是常用的選擇模型的指標(biāo)之一,在實際應(yīng)用中應(yīng)該盡量選擇R2較大的回歸模型.【閱讀材料2】2021年6月17日9時22分,我國酒泉衛(wèi)星發(fā)射中心用長征二號F遙十二運載火箭,成功將神舟十二號載人飛船送入預(yù)定軌道,順利將聶海勝、劉伯明、湯洪胺3名航天員送入太空,發(fā)射取得圓滿成功,這標(biāo)志著中國人首次進入自己的空間站.某公司負(fù)責(zé)生產(chǎn)的A型材料是神舟十二號的重要零件,該材料應(yīng)用前景十分廣泛,該公司為了將A型材料更好地投入商用,擬對A型材料進行應(yīng)用改造,根據(jù)市場調(diào)研與模擬,得到應(yīng)用改造投入x(億元)與產(chǎn)品的直接收益y(億元)的數(shù)據(jù)統(tǒng)計如下:序號123456789101112x2346810132122232425y1522274048546068.56867.56665當(dāng)0<x≤13時,建立了與的兩個回歸模型:模型①:;模型②:;當(dāng)x>13時,確定y與x滿足的線性回歸直線方程為.根據(jù)以上閱讀材料,解答以下問題:(1)根據(jù)下列表格中的數(shù)據(jù),比較當(dāng)0<x≤13時模型①,②的相關(guān)指數(shù)R2的大小,并選擇擬合效果更好的模型.回歸模型模型①模型②回歸方程79.1320.2(2)當(dāng)應(yīng)用改造的投入為20億元時,以回歸直線方程為預(yù)測依據(jù),計算公司的收益約為多少.附:①若最小二乘法求得回歸直線方程為,則;②③,當(dāng)時,.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】整理數(shù)列的通項公式有:,結(jié)合可得數(shù)列是首項為,公比為的等比數(shù)列,則,,原問題即:恒成立,當(dāng)時,,即>3,綜上可得:的最大值為3.本題選擇A選項點睛:數(shù)列的遞推關(guān)系是給出數(shù)列的一種方法,根據(jù)給出的初始值和遞推關(guān)系可以依次寫出這個數(shù)列的各項,由遞推關(guān)系求數(shù)列的通項公式,常用的方法有:①求出數(shù)列的前幾項,再歸納猜想出數(shù)列的一個通項公式;②將已知遞推關(guān)系式整理、變形,變成等差、等比數(shù)列,或用累加法、累乘法、迭代法求通項2、C【解析】根據(jù)雙曲線定義、余弦定理,結(jié)合題意,求得關(guān)系,即可求得離心率.【詳解】根據(jù)題意,作圖如下:不妨設(shè),則,,①;在△中,由余弦定理可得:,代值得:,②;聯(lián)立①②兩式可得:;在△和△中,由,可得:,整理得:,③;聯(lián)立②③可得:,又,故可得:,則,則,故離心率為.故選:C.3、D【解析】先由圓的方程得出兩圓的圓心坐標(biāo)和半徑,求出兩圓心間的距離與兩半徑之和與差比較可得答案.【詳解】圓的圓心為,半徑為圓的圓心為,半徑為兩圓心間的距離為由,所以兩圓相交.故選:D4、A【解析】利用三角形面積公式、二倍角正弦公式有,再由三角形內(nèi)角的性質(zhì)及余弦定理化簡求即可.【詳解】由,∴,在中,,∴,解得.故選:A.5、A【解析】利用基本不等式求得的最小值,把問題轉(zhuǎn)化為恒成立的類型,求解的最大值即可.【詳解】,,且a,b為正數(shù),,當(dāng)且僅當(dāng),即時,,若不等式對任意實數(shù)x恒成立,則對任意實數(shù)x恒成立,即對任意實數(shù)x恒成立,,,故選:A【點睛】本題主要考查了恒成立問題,基本不等式求最值,二次函數(shù)求最值,屬于中檔題.6、D【解析】本題是焦點在x軸的橢圓,求出c,即可求得焦點坐標(biāo).【詳解】,可得焦點坐標(biāo)為和.故選:D7、D【解析】利用特殊值排除錯誤選項,利用函數(shù)單調(diào)性證明正確選項.【詳解】時,,但,所以A選項錯誤.時,,但,所以B選項錯誤.時,,但,所以C選項錯誤.在上遞增,所以,即D選項正確.故選:D8、C【解析】由空間中關(guān)于坐標(biāo)軸對稱點坐標(biāo)的特征可直接得到結(jié)果.【詳解】關(guān)于軸對稱的點的坐標(biāo)不變,坐標(biāo)變?yōu)橄喾磾?shù),關(guān)于軸對稱的點為.故選:C.9、A【解析】根據(jù)原函數(shù)圖象判斷出函數(shù)單調(diào)性,由此判斷導(dǎo)函數(shù)的圖象.【詳解】原函數(shù)在上從左向右有增、減、增,個單調(diào)區(qū)間;在上遞減.所以導(dǎo)函數(shù)在上從左向右應(yīng)為:正、負(fù)、正;在上應(yīng)為負(fù).所以A選項符合.故選:A10、C【解析】結(jié)合互斥事件與對立事件的概念,對選項逐個分析可選出答案.【詳解】對于選項A,“至少有1個白球”和“都是紅球”是對立事件,不符合題意;對于選項B,“至少有2個白球”表示取出2個球都是白色的,而“至多有1個紅球”表示取出的球1個紅球1個白球,或者2個都是白球,二者不是互斥事件,不符合題意;對于選項C,“恰有1個白球”表示取出2個球1個紅球1個白球,與“恰有2個白球”是互斥而不對立的兩個事件,符合題意;對于選項D,“至多有1個白球”表示取出的2個球1個紅球1個白球,或者2個都是紅球,與“都是紅球”不是互斥事件,不符合題意.故選C.【點睛】本題考查了互斥事件和對立事件的定義的運用,考查了學(xué)生對知識的理解和掌握,屬于基礎(chǔ)題.11、A【解析】模擬執(zhí)行程序框圖,根據(jù)輸入數(shù)據(jù),即可求得輸出數(shù)據(jù).【詳解】當(dāng)時,不滿足,故,即輸出的的值為.故選:.12、C【解析】先求出公差,再利用公式可求總重量.【詳解】設(shè)頭部一尺重量為,其后每尺重量依次為,由題設(shè)有,,故公差為.故中間一尺的重量為所以這5項和為.故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】求導(dǎo),求得,,根據(jù)直線的點斜式方程求得答案.【詳解】因為,,所以切線的斜率,切線方程是,即.故答案為:.14、【解析】分析可知,由可求得結(jié)果.【詳解】雙曲線的漸近線方程為,由題意可知,.故答案為:.15、①.②.二元一次不等式表示直線的右上方區(qū)域(包含邊界)③.真【解析】由二元一次不等式的意義可解答問題.【詳解】因為,二元一次不等式所表示的區(qū)域如下圖所示:所以在的條件下,二元一次不等式表示直線的右上方區(qū)域(包含邊界),此命題是真命題.故答案為:;二元一次不等式表示直線的右上方區(qū)域(包含邊界);真16、【解析】設(shè)等比數(shù)列的公比為,根據(jù)已知條件求出的值,由此可得出的值.【詳解】設(shè)等比數(shù)列的公比為,則,整理可得,,解得,因此,.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)點與點重合時,二面角的余弦值為【解析】(1)先利用平面幾何知識和余弦定理得到及各邊長度,利用線面平行的性質(zhì)和判定定理得到線面垂直,再利用線線平行得到線面垂直;(2)建立空間直角坐標(biāo)系,設(shè),寫出相關(guān)點的坐標(biāo),得到相關(guān)向量的坐標(biāo),利用平面的法向量夾角求出二面角的余弦值,再通過二次函數(shù)的最值進行求解.【小問1詳解】證明:在梯形中,因為,,又因為,所以,,所以,即,解得,,所以,即.因為平面,平面,所以,而平面平面,所以平面.因為,所以平面.【小問2詳解】解:分別以直線為軸,軸,軸建立如圖所示的空間直角坐標(biāo)系(如圖所示),設(shè),則,所以,設(shè)為平面的一個法向量,由得,取,則,又是平面的一個法向量,設(shè)平面與平面所成銳二面角為,所以因為,所以當(dāng)時,有最小值為,所以點與點重合時,平面與平面所成二面角最大,此時二面角的余弦值為.18、(1)證明見解析(2)【解析】(1)證明垂直于平面BED內(nèi)的兩條相交直線,即可得到答案;(2)分別以O(shè)B,OC,OE為x軸,y軸,z軸,建立直角坐標(biāo)系,平面FAC的一個法向量為,代入向量的夾角公式,即可得到答案;【小問1詳解】∵ABCD為菱形,∴,設(shè)AC與BD的交點為O,則OE為的中位線,∴.由題意得平面ABCD,∴平面ABCD,而AC平面ABCD中,∴.又,∴平面BED.小問2詳解】∵ABCD為菱形,,∴為正三角形,∴.∵平面ABCD,∴與平面ABCD所成角,由,得,所以.如圖,分別以O(shè)B,OC,OE為x軸,y軸,z軸,建立直角坐標(biāo)系,則,,,,,,,設(shè)平面FAC的法向量為,則由可得,取,故可得平面FAC的一個法向量為,記直線與平面FAC的夾角為,則19、答案見解析【解析】(1)根據(jù)題設(shè)條件可得關(guān)于基本量的方程組,求解后可得的通項公式.(2)利用公式法可求數(shù)列的前項和.【詳解】解:選擇條件①和條件②(1)設(shè)等差數(shù)列的公差為,∴解得:,.∴,.(2)設(shè)等比數(shù)列的公比為,,∴解得,.設(shè)數(shù)列的前項和為,∴.選擇條件①和條件③:(1)設(shè)等差數(shù)列的公差為,∴解得:,.∴.(2),設(shè)等比數(shù)列的公比為,.∴,解得,.設(shè)數(shù)列的前項和為,∴.選擇條件②和條件③:(1)設(shè)等比數(shù)列的公比為,,∴,解得,,.設(shè)等差數(shù)列的公差為,∴,又,故.∴.(2)設(shè)數(shù)列的前項和為,由(1)可知.【點睛】方法點睛:等差數(shù)列或等比數(shù)列的處理有兩類基本方法:(1)利用基本量即把數(shù)學(xué)問題轉(zhuǎn)化為關(guān)于基本量的方程或方程組,再運用基本量解決與數(shù)列相關(guān)的問題;(2)利用數(shù)列的性質(zhì)求解即通過觀察下標(biāo)的特征和數(shù)列和式的特征選擇合適的數(shù)列性質(zhì)處理數(shù)學(xué)問題20、(1);(2)【解析】(1)由題意可得,,從而可求出橢圓的標(biāo)準(zhǔn)方程,(2)由題意設(shè)雙曲線的共漸近線方程為,再將的坐標(biāo)代入方程可求出的值,從而可求出雙曲線方程【小問1詳解】因為,所以P、Q分別是橢圓長軸和短軸上的端點,且橢圓的焦點在x軸上,所以,所以橢圓的標(biāo)準(zhǔn)方程為.【小問2詳解】設(shè)與雙曲線共漸近線的方程為,代入點,解得m

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論