版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
湖北省黃岡實驗學校2026屆數(shù)學高二上期末教學質(zhì)量檢測試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在平面幾何中,將完全覆蓋某平面圖形且直徑最小的圓,稱為該平面圖形的最小覆蓋圓.如線段的最小覆蓋圓就是以該線段為直徑的圓,銳角三角形的最小覆蓋圓就是該三角形的外接圓.若,,,則的最小覆蓋圓的半徑為()A. B.C. D.2.兩圓和的位置關(guān)系是()A.內(nèi)切 B.外離C.外切 D.相交3.在三棱柱中,,,,則這個三棱柱的高()A1 B.C. D.4.若兩個不同平面,的法向量分別為,,則()A.,相交但不垂直 B.C. D.以上均不正確5.已知正項等比數(shù)列的前項和為,且,則的最小值為()A. B.C. D.6.已知圓的圓心在x軸上,半徑為1,且過點,圓:,則圓,的公共弦長為A. B.C. D.27.執(zhí)行下圖所示的程序框圖,則輸出的值為()A.5 B.6C.7 D.88.已知,,則下列結(jié)論一定成立的是()A. B.C. D.9.已知雙曲線,則雙曲線M的漸近線方程是()A. B.C. D.10.函數(shù),則不等式的解集是()A. B.C. D.11.設(shè)α,β是兩個不同的平面,m,n是兩條不重合的直線,下列命題中為真命題的是()A如果,,n∥β,那么B.如果,,,那么α∥βC.如果m∥n,,,那么α∥βD.如果m∥n,,,那么12.已知等差數(shù)列的前項和為,且,,則()A.3 B.5C.6 D.10二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù)若存在,使得成立,則實數(shù)的取值范圍是_______________14.橢圓的右焦點是,兩點是橢圓的左頂點和上頂點,若△是直角三角形,則橢圓的離心率是________.15.若點為圓上的一個動點,則點到直線距離的最大值為________16.設(shè)x,y滿足約束條件則的最大值為________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)設(shè)函數(shù),(1)求的最大值;(2)求證:對于任意x∈(1,7),e1-x+18.(12分)已知拋物線經(jīng)過點.(Ⅰ)求拋物線C的方程及其焦點坐標;(Ⅱ)過拋物線C上一動點P作圓的兩條切線,切點分別為A,B,求四邊形面積的最小值.19.(12分)已知等比數(shù)列中,,數(shù)列滿足,(1)求數(shù)列的通項公式;(2)求證:數(shù)列為等差數(shù)列,并求前項和的最大值20.(12分)已知公差不為的等差數(shù)列的首項,且、、成等比數(shù)列.(1)求數(shù)列的通項公式;(2)設(shè),,是數(shù)列的前項和,求使成立的最大的正整數(shù).21.(12分)如圖,在三棱錐中,平面,,,為的中點.(1)證明:平面;(2)求平面與平面所成二面角的正弦值.22.(10分)經(jīng)觀測,某公路段在某時段內(nèi)的車流量(千輛/小時)與汽車的平均速度(千米/小時)之間有函數(shù)關(guān)系:(1)在該時段內(nèi),當汽車的平均速度為多少時車流量最大?最大車流量為多少?(精確到)(2)為保證在該時段內(nèi)車流量至少為千輛/小時,則汽車的平均速度應控制在什么范圍內(nèi)?
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】根據(jù)新定義只需求銳角三角形外接圓的方程即可得解.【詳解】,,,為銳角三角形,的外接圓就是它的最小覆蓋圓,設(shè)外接圓方程為,則解得的最小覆蓋圓方程為,即,的最小覆蓋圓的半徑為.故選:C2、A【解析】計算出圓心距,利用幾何法可判斷兩圓的位置關(guān)系.【詳解】圓的圓心坐標為,半徑為,圓的圓心坐標為,半徑為,兩圓圓心距為,則,因此,兩圓和內(nèi)切.故選:A.3、D【解析】先求出平面ABC的法向量,然后將高看作為向量在平面ABC的法向量上的投影的絕對值,則答案可求.【詳解】設(shè)平面ABC的法向量為,而,,則,即有,不妨令,則,故,設(shè)三棱柱的高為h,則,故選:D.4、B【解析】由向量數(shù)量積為0可求.【詳解】∵,,∴,∴,∴,故選:B.5、B【解析】設(shè)等比數(shù)列的公比為,則,由可得,可得出,利用基本不等式可求得結(jié)果.【詳解】設(shè)等比數(shù)列的公比為,則,因為,則,所以,,則,當且僅當時,等號成立.故選:B.6、A【解析】根據(jù)題意設(shè)圓方程為:,代點即可求出,進而求出方程,兩圓方程做差即可求得公共弦所在直線方程,再利用垂徑定理去求弦長.【詳解】設(shè)圓的圓心為,則其標準方程為:,將點代入方程,解得,故方程為:,兩圓,方程作差得其公共弦所在直線方程為:,圓心到該直線的距離為,因此公共弦長為,故選:A.【點睛】本題綜合考查圓的方程及直線與圓,圓與圓位置關(guān)系,屬于中檔題.一般遇見直線與圓相交問題時,常利用垂徑定理解決問題.7、C【解析】直接按照程序框圖運行即可得正確答案.【詳解】當時,不成立,時,不成立,時,不成立,時,不成立,時,不成立,時,不成立,時,不成立,時,成立,輸出的值為,故選:C.8、B【解析】根據(jù)不等式的同向可加性求解即可.【詳解】因為,所以,又,所以.故選:B.9、C【解析】由雙曲線的方程直接求出見解析即可.【詳解】由雙曲線,則其漸近線方程為:故選:C10、A【解析】利用導數(shù)判斷函數(shù)單調(diào)遞增,然后進行求解.【詳解】對函數(shù)進行求導:,因為,,所以,因為,所以f(x)是奇函數(shù),所以在R上單調(diào)遞增,又因為,所以的解集為.故選:A11、C【解析】AB.利用兩平面的位置關(guān)系判斷;CD.利用面面平行的判定定理判斷;【詳解】A.如果,,n∥β,那么α,β相交或平行;故錯誤;B.如果,,,那么α,β垂直,故錯誤;C.如果m∥n,,則,又,那么α∥β,故C正確;D錯誤,故選:C12、B【解析】根據(jù)等差數(shù)列的性質(zhì),以及等差數(shù)列的前項和公式,由題中條件,即可得出結(jié)果.【詳解】因為數(shù)列為等差數(shù)列,由,可得,,則.故選:B.【點睛】本題主要考查等差數(shù)列的性質(zhì),以及等差數(shù)列前項和的基本量運算,屬于基礎(chǔ)題型.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】分離參數(shù)法得到能成立,構(gòu)造函數(shù),求出的最小值,即可求出實數(shù)a的取值范圍.【詳解】由得.設(shè),則存在,使得成立,即能成立,所以能成立,所以.又令,由對勾函數(shù)的性質(zhì)可得:在上,t(x)單調(diào)遞增,所以當x=2時,t有最小值,所以實數(shù)a的取值范圍是.故答案為:【點睛】導數(shù)的應用主要有:(1)利用導函數(shù)幾何意義求切線方程;(2)利用導數(shù)研究原函數(shù)的單調(diào)性,求極值(最值);(3)利用導數(shù)求參數(shù)的取值范圍.14、【解析】由題設(shè)易知,應用斜率的兩點式及橢圓參數(shù)關(guān)系可得,進而求橢圓離心率.【詳解】由題設(shè),,,,又△是直角三角形,顯然,所以,可得,則,解得,又,所以.故答案為:.15、7【解析】根據(jù)給定條件求出圓C的圓心C到直線l的距離即可計算作答.【詳解】圓的圓心,半徑,點C到直線的距離,所以圓C上點P到直線l距離的最大值為.故答案為:716、1【解析】先作出可行域,由,得,作出直線,向下平移過點時,取得最大值,求出點坐標代入目標函數(shù)中可得答案【詳解】作出可行域如圖(圖中陰影部分),由,得,作出直線,向下平移過點時,取得最大值,由,得,即,所以的最大值為,故答案為:1三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)證明見解析【解析】(1)求出,討論其導數(shù)后可得原函數(shù)的單調(diào)性,從而可得函數(shù)的最大值.(2)先證明任意的,總有,再利用放縮法和換元法將不等式成立問題轉(zhuǎn)化為任意恒成立,后者可利用導數(shù)證明.【小問1詳解】,當時,;當時,,故在上為增函數(shù),在上為減函數(shù),故.【小問2詳解】因為,故當時,,即,而在為減函數(shù),故在上有,故任意的,總有.要證任意恒成立,即證:任意恒成立,即證:任意恒成立,由(1)可得,任意,有即,故即證:任意恒成立,設(shè),即證:任意恒成立,即證:任意恒成立,即證:任意恒成立,即證:任意恒成立,設(shè),則,而在為增函數(shù),,故存在,使得,且時,,時,,故在為減函數(shù),在為增函數(shù),故任意,總有,故任意恒成立,所以任意恒成立.【點睛】思路點睛:不等式的恒成立,可結(jié)合不等式的形式將其轉(zhuǎn)化為若干段上的不等式的恒成立,在每段上可采用不同的方式(導數(shù)、放縮法等)進行處理.18、(1),;(2).【解析】(1)將點代入拋物線方程求解出的值,則拋物線方程和焦點坐標可知;(2)設(shè)出點坐標,根據(jù)切線長相等以及切線垂直于半徑將四邊形的面積表示為,然后根據(jù)三角形面積公式將其表示為,根據(jù)點到點的距離公式表示出,然后結(jié)合二次函數(shù)的性質(zhì)求解出四邊形面積的最小值.【詳解】(1)因為拋物線過點,所以,所以,所以拋物線的方程為:,焦點坐標為,即;(2)設(shè),因為為圓的切線,所以,且,所以,又因為,所以,當時,四邊形的面積有最小值且最小值為.【點睛】關(guān)鍵點點睛:解答本題的關(guān)鍵在于根據(jù)圓的切線的性質(zhì)將四邊形面積轉(zhuǎn)化為三角形的面積,再通過三角形的面積公式將其轉(zhuǎn)化為二次函數(shù)求最值的問題模型,對于轉(zhuǎn)化的技巧要求較高.19、(1);(2)證明見解析,10.【解析】(1)設(shè)出等比數(shù)列的公比q,利用給定條件列出方程求出q值即得;(2)將給定等式變形成,再推理計算即可作答.【詳解】(1)設(shè)等比數(shù)列的公比為q,依題意,,而,解得,所以數(shù)列的通項公式為;(2)顯然,,由得:,所以數(shù)列是以為首項,公差為-1的等差數(shù)列,其通項為,于是得,由得,而,則數(shù)列前4項都為非負數(shù),從第5項起都是負數(shù),又,因此數(shù)列前4項和與前3項和相等并且最大,其值為,所以數(shù)列前項和的最大值是10.20、(1)(2)【解析】(1)設(shè)等差數(shù)列的公差為,根據(jù)已知條件可得出關(guān)于實數(shù)的等式,結(jié)合可求得的值,由此可得出數(shù)列的通項公式;(2)利用裂項求和法求出,解不等式即可得出結(jié)果.【小問1詳解】解:設(shè)等差數(shù)列公差為,則,由題意可得,即,整理得,,解得,故.【小問2詳解】解:,所以,,由得,可得,所以,滿足成立的最大的正整數(shù)的值為.21、(1)證明見解析(2)【解析】(1)根據(jù)勾股定理先證明,然后證明,進而通過線面垂直的判定定理證明問題;(2)建立空間直角坐標系,進而求出兩個平面的法向量,然后通過空間向量的夾角公式求得答案.【小問1詳解】∵,,∴,∴,∵平面,平面,∴,∵,,,∴平面.【小問2詳解】以點為坐標原點,向量,的方向分別為,軸的正方向建立空間直角坐標系,則,,,,,設(shè)平面的法向量為,由,,有取,可得平面的一個法向量為.設(shè)平面的一個法向量為,由,,有取,可得平面的一個法向量
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 呼吸系統(tǒng)疾病患者的營養(yǎng)支持
- 勞動爭議調(diào)查試題和答案
- 獸醫(yī)學題庫及答案
- 中級會計師考試模擬試題及答案
- 企業(yè)文化試題與答案(供參考)
- 《傳染病護理》考試試卷及答案
- 產(chǎn)科規(guī)培考試試題附答案
- 鹽山縣輔警考試公安基礎(chǔ)知識考試真題庫及答案
- 教師招聘考試教育學題庫及答案
- 稅法考試真題卷子及答案
- (一診)重慶市九龍坡區(qū)區(qū)2026屆高三學業(yè)質(zhì)量調(diào)研抽測(第一次)物理試題
- 2026新疆伊犁州新源縣總工會面向社會招聘工會社會工作者3人考試備考試題及答案解析
- 2026年榆能集團陜西精益化工有限公司招聘備考題庫完整答案詳解
- 2026廣東省環(huán)境科學研究院招聘專業(yè)技術(shù)人員16人筆試參考題庫及答案解析
- 2026年保安員理論考試題庫
- 2026年《必背60題》抖音本地生活BD經(jīng)理高頻面試題包含詳細解答
- 駱駝祥子劇本殺課件
- DGTJ08-10-2022 城鎮(zhèn)天然氣管道工程技術(shù)標準
- 反洗錢風險自評價制度
- 隱框、半隱框玻璃幕墻分項工程檢驗批質(zhì)量驗收記錄
- 包扎技術(shù)課件
評論
0/150
提交評論