版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
河南平頂山市2026屆高二數(shù)學(xué)第一學(xué)期期末復(fù)習(xí)檢測模擬試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知圓錐的表面積為,且它的側(cè)面展開圖是一個半圓,則這個圓錐的體積為()A. B.C. D.2.已知橢圓的短軸長和焦距相等,則a的值為()A.1 B.C. D.3.已知命題p:?x>2,x2>2x,命題q:?x0∈R,ln(x02+1)<0,則下列命題是真命題的是()A.p∧ B.p∨C.p∧q D.p∨q4.?dāng)?shù)列滿足,,則()A. B.C. D.25.已知等差數(shù)列的前項和為,若,,則()A. B.C. D.6.如圖,在三棱錐S—ABC中,點E,F(xiàn)分別是SA,BC的中點,點G在棱EF上,且滿足,若,,,則()A. B.C. D.7.在長方體中,,,則異面直線與所成角的正弦值是()A. B.C. D.8.若函數(shù)在定義域上單調(diào)遞增,則實數(shù)的取值范圍為()A. B.C. D.9.若“”是“”的充分不必要條件,則實數(shù)a的取值范圍為A. B.或C. D.10.下列命題是真命題的個數(shù)為()①不等式的解集為②不等式的解集為R③設(shè),則④命題“若,則或”為真命題A1 B.2C.3 D.411.直線的傾斜角的取值范圍是()A. B.C. D.12.下列語句為命題的是()A. B.你們好!C.下雨了嗎? D.對頂角相等二、填空題:本題共4小題,每小題5分,共20分。13.古希臘著名數(shù)學(xué)家阿波羅尼斯與歐幾里得、阿基米德齊名.他發(fā)現(xiàn):“平面內(nèi)到兩個定點A、B的距離之比為定值(且)的點的軌跡是圓”.后來人們將這個圓以他的名字命名,稱為阿波羅尼斯圓,簡稱阿氏圓,在平面直角坐標(biāo)系中,,,點滿足,則點P的軌跡方程為__________.(答案寫成標(biāo)準方程),的最小值為___________.14.如圖,設(shè)正方形ABCD與正方形ABEF的邊長都為1,若平面ABCD,則異面直線AC與BF所成角的大小為______15.滕王閣,江南三大名樓之一,因初唐詩人王勃所作《滕王閣序》中的“落霞與孤鶩齊飛,秋水共長天一色”而名傳千古,流芳后世.如圖,在滕王閣旁地面上共線的三點,,處測得閣頂端點的仰角分別為,,.且米,則滕王閣高度___________米.16.平面直角坐標(biāo)系內(nèi)動點M()與定點F(4,0)的距離和M到定直線的距離之比是常數(shù),則動點M的軌跡是___________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知某學(xué)校的初中、高中年級的在校學(xué)生人數(shù)之比為9:11,該校為了解學(xué)生的課下做作業(yè)時間,用分層抽樣的方法在初中、高中年級的在校學(xué)生中共抽取了100名學(xué)生,調(diào)查了他們課下做作業(yè)的時間,并根據(jù)調(diào)查結(jié)果繪制了如下頻率分布直方圖:(1)在抽取的100名學(xué)生中,初中、高中年級各抽取的人數(shù)是多少?(2)根據(jù)頻率分布直方圖,估計學(xué)生做作業(yè)時間的中位數(shù)和平均時長(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);(3)另據(jù)調(diào)查,這100人中做作業(yè)時間超過4小時的人中2人來自初中年級,3人來自高中年級,從中任選2人,恰好1人來自初中年級,1人來自高中年級的概率是多少18.(12分)已知橢圓C:的長軸長為,P是橢圓上異于頂點的一個動點,O為坐標(biāo)原點,A為橢圓C的上頂點,Q為PA的中點,且直線PA與直線OQ的斜率之積恒為-2.(1)求橢圓C的方程;(2)若斜率為k且過上焦點F的直線l與橢圓C相交于M,N兩點,當(dāng)點M,N到y(tǒng)軸距離之和最大時,求直線l的方程.19.(12分)已知拋物線過點.(1)求拋物線方程;(2)若直線與拋物線交于兩點兩點在軸的兩側(cè),且,求證:過定點.20.(12分)已知橢圓的右焦點為,且經(jīng)過點.(1)求橢圓的標(biāo)準方程;(2)設(shè)橢圓的左頂點為,過點的直線(與軸不重合)交橢圓于兩點,直線交直線于點,若直線上存在另一點,使.求證:三點共線.21.(12分)設(shè)函數(shù).(1)當(dāng)k=1時,求函數(shù)的單調(diào)區(qū)間;(2)當(dāng)時,求函數(shù)在上的最小值m和最大值M.22.(10分)已知數(shù)列的前項和分別是,滿足,,且.(1)求數(shù)列的通項公式;(2)若數(shù)列對任意都有恒成立,求.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】設(shè)圓錐的半徑為,母線長,根據(jù)已知條件求出、的值,可求得該圓錐的高,利用錐體的體積公式可求得結(jié)果.【詳解】設(shè)圓錐的半徑為,母線長,因為側(cè)面展開圖是一個半圓,則,即,又圓錐的表面積為,則,解得,,則圓錐的高,所以圓錐的體積,故選:D.2、A【解析】由題設(shè)及橢圓方程可得,即可求參數(shù)a的值.【詳解】由題設(shè)易知:橢圓參數(shù),即有,可得故選:A3、B【解析】取x=4,得出命題p是假命題,由對數(shù)的運算得出命題q是假命題,再判斷選項.【詳解】命題p:?x>2,x2>2x,是假命題,例如取x=4,則42=24;命題q:?x0∈R,ln(x02+1)<0,是假命題,∵?x∈R,ln(x2+1)≥0.則下列命題是真命題的是.故選:B.4、C【解析】根據(jù)已知分析數(shù)列周期性,可得答案【詳解】解:∵數(shù)列滿足,,∴,,,,故數(shù)列以4為周期呈現(xiàn)周期性變化,由,故,故選C【點睛】本題考查的知識點是數(shù)列的遞推公式,數(shù)列的周期性,難度中檔5、B【解析】根據(jù)和可求得,結(jié)合等差數(shù)列通項公式可求得.【詳解】設(shè)等差數(shù)列公差為,由得:;又,,.故選:B.6、D【解析】利用空間向量的加、減運算即可求解.詳解】由題意可得故選:D7、C【解析】連接,可得,得到異面直線與所成角即為直線與所成角,設(shè),設(shè),求得的值,在中,利用余弦定理,即可求解.【詳解】如圖所示,連接,在正方體中,可得,所以異面直線與所成角即為直線與所成角,設(shè),由在長方體中,,,設(shè),可得,在直角中,可得,在中,可得,所以,因為,所以.故選:C.8、D【解析】函數(shù)在定義域上單調(diào)遞增等價于在上恒成立,即在上恒成立,然后易得,最后求出范圍即可.【詳解】函數(shù)的定義域為,,在定義域上單調(diào)遞增等價于在上恒成立,即在上恒成立,即在上恒成立,分離參數(shù)得,所以,即.【點睛】方法點睛:已知函數(shù)的單調(diào)性求參數(shù)的取值范圍的通解:若在區(qū)間上單調(diào)遞增,則在區(qū)間上恒成立;若在區(qū)間上單調(diào)遞減,則在區(qū)間上恒成立;然后再利用分離參數(shù)求得參數(shù)的取值范圍即可.9、D【解析】“”是“”的充分不必要條件,結(jié)合集合的包含關(guān)系,即可求出的取值范圍.【詳解】∵“”是“”的充分不必要條件∴或∴故選:D.【點睛】本題考查充分必要條件,根據(jù)充要條件求解參數(shù)的范圍時,可把充分條件、必要條件或充要條件轉(zhuǎn)化為集合間的關(guān)系,由此得到不等式(組)后再求范圍.解題時要注意,在利用兩個集合之間的關(guān)系求解參數(shù)的取值范圍時,不等式是否能夠取等號決定端點值的取舍,處理不當(dāng)容易出現(xiàn)漏解或增解的現(xiàn)象.10、B【解析】舉反例判斷A,解一元二次不等式確定B,由導(dǎo)數(shù)的運算法則求導(dǎo)判斷C,利用逆否命題判斷D【詳解】顯然不是的解,A錯;,B正確;,,C錯;命題“若,則或”的逆否命題是:若且,則,是真命題,原命題也是真命題,D正確真命題個數(shù)2.故選:B11、A【解析】由直線方程求得直線斜率的范圍,再由斜率等于傾斜角的正切值可得直線的傾斜角的取值范圍.【詳解】∵直線的斜率,,設(shè)直線的傾斜角為,則,解得.故選:A.12、D【解析】根據(jù)命題的定義判斷即可.【詳解】因為能夠判斷真假的語句叫作命題,所以ABC錯誤,D正確.故選:D二、填空題:本題共4小題,每小題5分,共20分。13、①.②.【解析】設(shè)點P坐標(biāo),然后用直接法可求;根據(jù)軌跡方程和數(shù)量積的坐標(biāo)表示對化簡,結(jié)合軌跡方程可得x的范圍,然后可解.【詳解】設(shè)P點坐標(biāo)為,則由,得,化簡得,即.因為,所以因為點P在圓上,故所以,故的最小值為.故答案為:,14、##【解析】建立空間直角坐標(biāo)系,利用空間向量法求出異面直線所成角;【詳解】解:如圖建立空間直角坐標(biāo)系,則、、、,所以,,設(shè)直線與所成角為,則,因為,所以;故答案為:15、【解析】設(shè),由邊角關(guān)系可得,,,在和中,利用余弦定理列方程,結(jié)合可解得的值,進而可得長.【詳解】設(shè),因為,,,所以,,,.在中,,即①.,在中,,即②,因為,所以①②兩式相加可得:,解得:,則,故答案為:.16、【解析】根據(jù)直接法,即可求軌跡.【詳解】解:動點與定點的距離和它到定直線的距離之比是常數(shù),根據(jù)題意得,點的軌跡就是集合,由此得.將上式兩邊平方,并化簡,得所以,動點的軌跡是長軸長、短軸長分別為12、的橢圓故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)初中、高中年級所抽取人數(shù)分別為45、55(2)2.375小時,2.4小時(3)【解析】(1)依據(jù)分層抽樣的原則列方程即可解決;(2)依據(jù)頻率分布直方圖計算學(xué)生做作業(yè)時間的中位數(shù)和平均時長即可;(3)依據(jù)古典概型即可求得恰好1人來自初中年級,1人來自高中年級的概率.【小問1詳解】設(shè)初中、高中年級所抽取人數(shù)分別為x、y,由已知可得,解得;【小問2詳解】的頻率為,的頻率為,的頻率為因為,,所以中位數(shù)在區(qū)間上,設(shè)為x,則,解得,所以學(xué)生做作業(yè)時間的中位數(shù)為2.375小時;平均時長為小時.故估計學(xué)生做作業(yè)時間的中位數(shù)為2.375小時,平均時長為2.4小時【小問3詳解】2人來自初中年級,記為,,3人來自高中年級,記為,,,則從中任選2人,所有可能結(jié)果有:,,,,,,,,,共10種,其中恰好1人來自初中年級,1人來自高中年級有6種可能,所以恰好1人來自初中年級,1人來自高中年級的概率為18、(1)(2)【解析】(1)設(shè)點,求出直線、直線的斜率相乘可得,結(jié)合可得答案;(2)設(shè)直線l的方程為與橢圓方程聯(lián)立,代入得,設(shè),再利用基本不等式可得答案.【小問1詳解】由題意可得,,即,則,設(shè)點,∵Q為的中點,∴,∴直線斜率,直線的斜率,∴,又∵,∴,則,解得,∴橢圓C的方程為.【小問2詳解】由(1)知,設(shè)直線l的方程為,聯(lián)立化簡得,,設(shè),則,易知M,N到y(tǒng)軸的距離之和為,,設(shè),∴,當(dāng)且僅當(dāng)即時等號成立,所以當(dāng)時取得最大值,此時直線l的方程為.19、(1);(2)證明見解析.【解析】(1)運用代入法直接求解即可;(2)設(shè)出直線的方程與拋物線方程聯(lián)立,結(jié)合一元二次方程根與系數(shù)關(guān)系、平面向量數(shù)量積的坐標(biāo)表示公式進行求解即可.【小問1詳解】由已知可得:;【小問2詳解】的斜率不為設(shè),,∴OA→?因為直線與拋物線交于兩點兩點在軸的兩側(cè),所以,即過定點.【點睛】關(guān)鍵點睛:運用一元二次方程根與系數(shù)關(guān)系是解題的關(guān)鍵.20、(1);(2)證明見解析.【解析】(1)根據(jù)給定條件利用橢圓的定義求出軸長即可計算作答.(2)根據(jù)給定條件設(shè)出的方程,與橢圓C的方程聯(lián)立,求出直線PA的方程并求出點M的坐標(biāo),求出點N的坐標(biāo),再利用斜率推理作答.【小問1詳解】依題意,橢圓的左焦點,由橢圓定義得:即,則,所以橢圓的標(biāo)準方程為.【小問2詳解】由(1)知,,直線不垂直y軸,設(shè)直線方程為,,由消去x得:,則,,直線的斜率,直線的方程:,而直線,即,直線的斜率,而,即,直線的斜率,直線的方程:,則點,直線的斜率,直線的斜率,,而,即,所以三點共線.【點睛】思路點睛:解答直線與橢圓的題目時,時常把兩個曲線的方程聯(lián)立,消去x(或y)建立一元二次方程,然后借助根與系數(shù)的關(guān)系,并結(jié)合題設(shè)條件建立有關(guān)參變量的等量關(guān)系21、(1)增區(qū)間為(2),【解析】(1)求導(dǎo),由判別式可判斷導(dǎo)數(shù)符號,然后可得;(2)求導(dǎo),求導(dǎo)數(shù)零點,比較函數(shù)極值和端點函數(shù)值,結(jié)合單調(diào)性可得.【小問1詳解】因為,所以,,因為,所以恒成立所以的增區(qū)間為.【小問2詳解】當(dāng)時,,令,解得,當(dāng)時,,當(dāng)時,,當(dāng)時
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 小學(xué)美術(shù)興趣班活動方案
- 路緣石專項施工方案
- 六一兒童節(jié)歡樂美食節(jié)活動方案范文
- 中風(fēng)患者護理全過程管理方案
- 智慧路燈建設(shè)工作方案
- 環(huán)衛(wèi)車承包實施方案范本
- 2026年智慧城市建設(shè)項目評估分析方案
- 房屋改造布置工作方案
- 項目造價管理實施方案
- 連隊學(xué)習(xí)室建設(shè)方案
- 2025年上海市公務(wù)員《行政職業(yè)能力測驗(A卷)》試題(網(wǎng)友回憶版)
- 城市更新與區(qū)域經(jīng)濟刺激-洞察闡釋
- GB/T 7573-2025紡織品水萃取液pH值的測定
- 境內(nèi)大中小型企業(yè)貸款專項統(tǒng)計制度
- 北師版-八年級數(shù)學(xué)上冊常見計算題練習(xí)
- 【生物】種子的萌發(fā)-2024-2025學(xué)年七年級生物下冊同步教學(xué)課件(人教版2024)
- 光伏發(fā)電安裝質(zhì)量驗收評定表
- 房屋過戶給子女的協(xié)議書的范文
- 超聲振動珩磨裝置的總體設(shè)計
- 醫(yī)保違規(guī)行為分類培訓(xùn)課件
- 醫(yī)療器械法規(guī)對互聯(lián)網(wǎng)銷售的限制
評論
0/150
提交評論