云南省麗江縣第三中學(xué)2026屆數(shù)學(xué)高三上期末質(zhì)量檢測(cè)模擬試題含解析_第1頁(yè)
云南省麗江縣第三中學(xué)2026屆數(shù)學(xué)高三上期末質(zhì)量檢測(cè)模擬試題含解析_第2頁(yè)
云南省麗江縣第三中學(xué)2026屆數(shù)學(xué)高三上期末質(zhì)量檢測(cè)模擬試題含解析_第3頁(yè)
云南省麗江縣第三中學(xué)2026屆數(shù)學(xué)高三上期末質(zhì)量檢測(cè)模擬試題含解析_第4頁(yè)
云南省麗江縣第三中學(xué)2026屆數(shù)學(xué)高三上期末質(zhì)量檢測(cè)模擬試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩14頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

云南省麗江縣第三中學(xué)2026屆數(shù)學(xué)高三上期末質(zhì)量檢測(cè)模擬試題考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫(xiě)在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫(xiě)在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫(xiě)在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知,則p是q的()A.充分而不必要條件 B.必要而不充分條件C.充分必要條件 D.既不充分也不必要條件2.在展開(kāi)式中的常數(shù)項(xiàng)為A.1 B.2 C.3 D.73.已知點(diǎn)是拋物線:的焦點(diǎn),點(diǎn)為拋物線的對(duì)稱(chēng)軸與其準(zhǔn)線的交點(diǎn),過(guò)作拋物線的切線,切點(diǎn)為,若點(diǎn)恰好在以,為焦點(diǎn)的雙曲線上,則雙曲線的離心率為()A. B. C. D.4.一個(gè)幾何體的三視圖及尺寸如下圖所示,其中正視圖是直角三角形,側(cè)視圖是半圓,俯視圖是等腰三角形,該幾何體的表面積是()A.B.C.D.5.函數(shù)的部分圖象大致是()A. B.C. D.6.已知集合,,則=()A. B. C. D.7.如果實(shí)數(shù)滿足條件,那么的最大值為()A. B. C. D.8.已知集合A={y|y=|x|﹣1,x∈R},B={x|x≥2},則下列結(jié)論正確的是()A.﹣3∈AB.3BC.A∩B=BD.A∪B=B9.如圖,在正方體中,已知、、分別是線段上的點(diǎn),且.則下列直線與平面平行的是()A. B. C. D.10.下列函數(shù)中,值域?yàn)镽且為奇函數(shù)的是()A. B. C. D.11.正的邊長(zhǎng)為2,將它沿邊上的高翻折,使點(diǎn)與點(diǎn)間的距離為,此時(shí)四面體的外接球表面積為()A. B. C. D.12.已知雙曲線:(,)的焦距為.點(diǎn)為雙曲線的右頂點(diǎn),若點(diǎn)到雙曲線的漸近線的距離為,則雙曲線的離心率是()A. B. C.2 D.3二、填空題:本題共4小題,每小題5分,共20分。13.“今有女善織,日益功疾,初日織五尺,今一月共織九匹三丈.”其白話意譯為:“現(xiàn)有一善織布的女子,從第2天開(kāi)始,每天比前一天多織相同數(shù)量的布,第一天織了5尺布,現(xiàn)在一個(gè)月(按30天計(jì)算)共織布390尺.”則每天增加的數(shù)量為_(kāi)___尺,設(shè)該女子一個(gè)月中第n天所織布的尺數(shù)為,則______.14.已知,若,則________.15.的展開(kāi)式中,的系數(shù)是______.16.在平面直角坐標(biāo)系中,已知點(diǎn),,若圓上有且僅有一對(duì)點(diǎn),使得的面積是的面積的2倍,則的值為_(kāi)______.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)在平面直角坐標(biāo)系xOy中,曲線l的參數(shù)方程為(為參數(shù)),以原點(diǎn)O為極點(diǎn),x軸非負(fù)半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為4sin.(1)求曲線C的普通方程;(2)求曲線l和曲線C的公共點(diǎn)的極坐標(biāo).18.(12分)設(shè)函數(shù),.(1)求函數(shù)的極值;(2)對(duì)任意,都有,求實(shí)數(shù)a的取值范圍.19.(12分)“綠水青山就是金山銀山”,為推廣生態(tài)環(huán)境保護(hù)意識(shí),高二一班組織了環(huán)境保護(hù)興趣小組,分為兩組,討論學(xué)習(xí).甲組一共有人,其中男生人,女生人,乙組一共有人,其中男生人,女生人,現(xiàn)要從這人的兩個(gè)興趣小組中抽出人參加學(xué)校的環(huán)保知識(shí)競(jìng)賽.(1)設(shè)事件為“選出的這個(gè)人中要求兩個(gè)男生兩個(gè)女生,而且這兩個(gè)男生必須來(lái)自不同的組”,求事件發(fā)生的概率;(2)用表示抽取的人中乙組女生的人數(shù),求隨機(jī)變量的分布列和期望20.(12分)如圖,四棱錐中,平面平面,底面為梯形.,且與均為正三角形.為的中點(diǎn)為重心,與相交于點(diǎn).(1)求證:平面;(2)求三棱錐的體積.21.(12分)如圖,在四棱錐中,底面為直角梯形,,,,,,點(diǎn)、分別為,的中點(diǎn),且平面平面.(1)求證:平面.(2)若,求直線與平面所成角的正弦值.22.(10分)在直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)求和的直角坐標(biāo)方程;(2)已知為曲線上的一個(gè)動(dòng)點(diǎn),求線段的中點(diǎn)到直線的最大距離.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】

根據(jù)誘導(dǎo)公式化簡(jiǎn)再分析即可.【詳解】因?yàn)?所以q成立可以推出p成立,但p成立得不到q成立,例如,而,所以p是q的必要而不充分條件.故選:B【點(diǎn)睛】本題考查充分與必要條件的判定以及誘導(dǎo)公式的運(yùn)用,屬于基礎(chǔ)題.2、D【解析】

求出展開(kāi)項(xiàng)中的常數(shù)項(xiàng)及含的項(xiàng),問(wèn)題得解?!驹斀狻空归_(kāi)項(xiàng)中的常數(shù)項(xiàng)及含的項(xiàng)分別為:,,所以展開(kāi)式中的常數(shù)項(xiàng)為:.故選:D【點(diǎn)睛】本題主要考查了二項(xiàng)式定理中展開(kāi)式的通項(xiàng)公式及轉(zhuǎn)化思想,考查計(jì)算能力,屬于基礎(chǔ)題。3、D【解析】

根據(jù)拋物線的性質(zhì),設(shè)出直線方程,代入拋物線方程,求得k的值,設(shè)出雙曲線方程,求得2a=丨AF2丨﹣丨AF1丨=(1)p,利用雙曲線的離心率公式求得e.【詳解】直線F2A的直線方程為:y=kx,F(xiàn)1(0,),F(xiàn)2(0,),代入拋物線C:x2=2py方程,整理得:x2﹣2pkx+p2=0,∴△=4k2p2﹣4p2=0,解得:k=±1,∴A(p,),設(shè)雙曲線方程為:1,丨AF1丨=p,丨AF2丨p,2a=丨AF2丨﹣丨AF1丨=(1)p,2c=p,∴離心率e1,故選:D.【點(diǎn)睛】本題考查拋物線及雙曲線的方程及簡(jiǎn)單性質(zhì),考查轉(zhuǎn)化思想,考查計(jì)算能力,屬于中檔題.4、D【解析】

由三視圖可知該幾何體的直觀圖是軸截面在水平面上的半個(gè)圓錐,表面積為,故選D.5、C【解析】

判斷函數(shù)的性質(zhì),和特殊值的正負(fù),以及值域,逐一排除選項(xiàng).【詳解】,函數(shù)是奇函數(shù),排除,時(shí),,時(shí),,排除,當(dāng)時(shí),,時(shí),,排除,符合條件,故選C.【點(diǎn)睛】本題考查了根據(jù)函數(shù)解析式判斷函數(shù)圖象,屬于基礎(chǔ)題型,一般根據(jù)選項(xiàng)判斷函數(shù)的奇偶性,零點(diǎn),特殊值的正負(fù),以及單調(diào)性,極值點(diǎn)等排除選項(xiàng).6、C【解析】

計(jì)算,,再計(jì)算交集得到答案.【詳解】,,故.故選:.【點(diǎn)睛】本題考查了交集運(yùn)算,意在考查學(xué)生的計(jì)算能力.7、B【解析】

解:當(dāng)直線過(guò)點(diǎn)時(shí),最大,故選B8、C【解析】試題分析:集合考點(diǎn):集合間的關(guān)系9、B【解析】

連接,使交于點(diǎn),連接、,可證四邊形為平行四邊形,可得,利用線面平行的判定定理即可得解.【詳解】如圖,連接,使交于點(diǎn),連接、,則為的中點(diǎn),在正方體中,且,則四邊形為平行四邊形,且,、分別為、的中點(diǎn),且,所以,四邊形為平行四邊形,則,平面,平面,因此,平面.故選:B.【點(diǎn)睛】本題主要考查了線面平行的判定,考查了推理論證能力和空間想象能力,屬于中檔題.10、C【解析】

依次判斷函數(shù)的值域和奇偶性得到答案.【詳解】A.,值域?yàn)?,非奇非偶函?shù),排除;B.,值域?yàn)?,奇函?shù),排除;C.,值域?yàn)?,奇函?shù),滿足;D.,值域?yàn)椋瞧娣桥己瘮?shù),排除;故選:.【點(diǎn)睛】本題考查了函數(shù)的值域和奇偶性,意在考查學(xué)生對(duì)于函數(shù)知識(shí)的綜合應(yīng)用.11、D【解析】

如圖所示,設(shè)的中點(diǎn)為,的外接圓的圓心為,四面體的外接球的球心為,連接,利用正弦定理可得,利用球心的性質(zhì)和線面垂直的性質(zhì)可得四邊形為平行四邊形,最后利用勾股定理可求外接球的半徑,從而可得外接球的表面積.【詳解】如圖所示,設(shè)的中點(diǎn)為,外接圓的圓心為,四面體的外接球的球心為,連接,則平面,.因?yàn)椋?,因?yàn)?,?由正弦定理可得,故,又因?yàn)?,?因?yàn)?,故平面,所以,因?yàn)槠矫?,平面,故,故,所以四邊形為平行四邊形,所以,所以,故外接球的半徑為,外接球的表面積為.故選:D.【點(diǎn)睛】本題考查平面圖形的折疊以及三棱錐外接球表面積的計(jì)算,還考查正弦定理和余弦定理,折疊問(wèn)題注意翻折前后的變量與不變量,外接球問(wèn)題注意先確定外接球的球心的位置,然后把半徑放置在可解的直角三角形中來(lái)計(jì)算,本題有一定的難度.12、A【解析】

由點(diǎn)到直線距離公式建立的等式,變形后可求得離心率.【詳解】由題意,一條漸近線方程為,即,∴,,即,,.故選:A.【點(diǎn)睛】本題考查求雙曲線的離心率,掌握漸近線方程與點(diǎn)到直線距離公式是解題基礎(chǔ).二、填空題:本題共4小題,每小題5分,共20分。13、52【解析】

設(shè)從第2天開(kāi)始,每天比前一天多織尺布,由等差數(shù)列前項(xiàng)和公式求出,由此利用等差數(shù)列通項(xiàng)公式能求出.【詳解】設(shè)從第2天開(kāi)始,每天比前一天多織d尺布,

則,

解得,即每天增加的數(shù)量為,

,故答案為,52.【點(diǎn)睛】本題主要考查等差數(shù)列的通項(xiàng)公式、等差數(shù)列的求和公式,意在考查利用所學(xué)知識(shí)解決問(wèn)題的能力,屬于中檔題.14、1【解析】

由題意先求得的值,可得,再令,可得結(jié)論.【詳解】已知,,,,令,可得,故答案為:1.【點(diǎn)睛】本題主要考查二項(xiàng)式定理的應(yīng)用,注意根據(jù)題意,分析所給代數(shù)式的特點(diǎn),通過(guò)給二項(xiàng)式的賦值,求展開(kāi)式的系數(shù)和,可以簡(jiǎn)便的求出答案,屬于基礎(chǔ)題.15、【解析】

先將原式展開(kāi)成,發(fā)現(xiàn)中不含,故只研究后面一項(xiàng)即可得解.【詳解】,依題意,只需求中的系數(shù),是.故答案為:-40【點(diǎn)睛】本題考查二項(xiàng)式定理性質(zhì),關(guān)鍵是先展開(kāi)再利用排列組合思想解決,屬于基礎(chǔ)題.16、【解析】

寫(xiě)出所在直線方程,求出圓心到直線的距離,結(jié)合題意可得關(guān)于的等式,求解得答案.【詳解】解:直線的方程為,即.圓的圓心到直線的距離,由的面積是的面積的2倍的點(diǎn),有且僅有一對(duì),可得點(diǎn)到的距離是點(diǎn)到直線的距離的2倍,可得過(guò)圓的圓心,如圖:由,解得.故答案為:.【點(diǎn)睛】本題考查直線和圓的位置關(guān)系以及點(diǎn)到直線的距離公式應(yīng)用,考查數(shù)形結(jié)合的解題思想方法,屬于中檔題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)(2)(2,).【解析】

(1)利用極坐標(biāo)和直角坐標(biāo)的轉(zhuǎn)化公式求解.(2)先把兩個(gè)方程均化為普通方程,求解公共點(diǎn)的直角坐標(biāo),然后化為極坐標(biāo)即可.【詳解】(1)∵曲線C的極坐標(biāo)方程為,∴,則,即.(2),∴,聯(lián)立可得,(舍)或,公共點(diǎn)(,3),化為極坐標(biāo)(2,).【點(diǎn)睛】本題主要考查極坐標(biāo)和直角坐標(biāo)的轉(zhuǎn)化及交點(diǎn)的求解,熟記極坐標(biāo)和直角坐標(biāo)的轉(zhuǎn)化公式是求解的關(guān)鍵,交點(diǎn)問(wèn)題一般是統(tǒng)一一種坐標(biāo)形式求解后再進(jìn)行轉(zhuǎn)化,側(cè)重考查數(shù)學(xué)運(yùn)算的核心素養(yǎng).18、(1)當(dāng)時(shí),無(wú)極值;當(dāng)時(shí),極小值為;(2).【解析】

(1)求導(dǎo),對(duì)參數(shù)進(jìn)行分類(lèi)討論,即可容易求得函數(shù)的極值;(2)構(gòu)造函數(shù),兩次求導(dǎo),根據(jù)函數(shù)單調(diào)性,由恒成立問(wèn)題求參數(shù)范圍即可.【詳解】(1)依題,當(dāng)時(shí),,函數(shù)在上單調(diào)遞增,此時(shí)函數(shù)無(wú)極值;當(dāng)時(shí),令,得,令,得所以函數(shù)在上單調(diào)遞增,在上單調(diào)遞減.此時(shí)函數(shù)有極小值,且極小值為.綜上:當(dāng)時(shí),函數(shù)無(wú)極值;當(dāng)時(shí),函數(shù)有極小值,極小值為.(2)令易得且,令所以,因?yàn)?,,從而,所以,在上單調(diào)遞增.又若,則所以在上單調(diào)遞增,從而,所以時(shí)滿足題意.若,所以,,在中,令,由(1)的單調(diào)性可知,有最小值,從而.所以所以,由零點(diǎn)存在性定理:,使且在上單調(diào)遞減,在上單調(diào)遞增.所以當(dāng)時(shí),.故當(dāng),不成立.綜上所述:的取值范圍為.【點(diǎn)睛】本題考查利用導(dǎo)數(shù)研究含參函數(shù)的極值,涉及由恒成立問(wèn)題求參數(shù)范圍的問(wèn)題,屬壓軸題.19、(Ⅰ);(Ⅱ)分布列見(jiàn)解析,.【解析】

(Ⅰ)直接利用古典概型概率公式求.(Ⅱ)先由題得可能取值為,再求x的分布列和期望.【詳解】(Ⅰ)(Ⅱ)可能取值為,,,,,的分布列為0123.【點(diǎn)睛】本題主要考查古典概型的計(jì)算,考查隨機(jī)變量的分布列和期望的計(jì)算,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平和分析推理能力.20、(1)見(jiàn)解析(2)【解析】

(1)第(1)問(wèn),連交于,連接.證明//,即證平面.(2)第(2)問(wèn),主要是利用體積變換,,求得三棱錐的體積.【詳解】(1)方法一:連交于,連接.由梯形,且,知又為的中點(diǎn),為的重心,∴在中,,故//.又平面,平面,∴平面.方法二:過(guò)作交PD于N,過(guò)F作FM||AD交CD于M,連接MN,G為△PAD的重心,又ABCD為梯形,AB||CD,又由所作GN||AD,FM||AD,得//,所以GNMF為平行四邊形.因?yàn)镚F||MN,(2)方法一:由平面平面,與均為正三角形,為的中點(diǎn)∴,,得平面,且由(1)知//平面,∴又由梯形ABCD,AB||CD,且,知又為正三角形,得,∴,得∴三棱錐的體積為.方法二:由平面平面,與均為正三角形,為的中點(diǎn)∴,,得平面,且由,∴而又為正三角形,得,得.∴,∴三棱錐的體積為.21、(1)見(jiàn)解析(2)【解析】

(1)首先可得,再面面垂直的性質(zhì)可得平面,即可得到,再由,即可得到線面垂直;(2)過(guò)點(diǎn)做平面的垂線,以為原點(diǎn),分別以,,為,,軸建立空間直角坐標(biāo)系,利用空間向量法求出線面角;【詳解】解:(1)∵,點(diǎn)為的中點(diǎn),∴,又∵平面平面,平面平面,平面,∴平面,又平面,∴,又∵,分別為,的中點(diǎn),∴,∴,又平面,平面,,∴平面.(2)過(guò)點(diǎn)做平面的垂線,以為原點(diǎn),分別以,,為,,軸建立空間直角坐標(biāo)系,∵,∴,,,,∴

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論