版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
重慶市南川三校聯(lián)盟2026屆高二數(shù)學(xué)第一學(xué)期期末教學(xué)質(zhì)量檢測試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若拋物線的焦點與橢圓的下焦點重合,則m的值為()A.4 B.2C. D.2.拋物線的焦點到準(zhǔn)線的距離是A.2 B.4C. D.3.拋物線有一條重要的性質(zhì):平行于拋物線的軸的光線,經(jīng)過拋物線上的一點反射后經(jīng)過它的焦點.反之,從焦點發(fā)出的光線,經(jīng)過拋物線上的一點反射后,反射光線平行于拋物線的軸.已知拋物線,從點發(fā)出一條平行于x軸的光線,經(jīng)過拋物線兩次反射后,穿過點,則光線從A出發(fā)到達(dá)B所走過的路程為()A.8 B.10C.12 D.144.在等差數(shù)列中,,且,,,構(gòu)成等比數(shù)列,則公差()A.0或2 B.2C.0 D.0或5.若拋物線y2=4x上一點P到x軸的距離為2,則點P到拋物線的焦點F的距離為()A.4 B.5C.6 D.76.已知數(shù)列中,,(),則等于()A. B.C. D.27.過點且與原點距離最大的直線方程是()A. B.C. D.8.若函數(shù)有兩個不同的極值點,則實數(shù)的取值范圍是()A. B.C. D.9.橢圓的左、右焦點分別為、,上存在兩點、滿足,,則的離心率為()A. B.C. D.10.已知函數(shù),則曲線在點處的切線方程為()A. B.C. D.11.為了了解1000名學(xué)生的學(xué)習(xí)情況,采用系統(tǒng)抽樣的方法,從中抽取容量為50的樣本,則分段的間隔為()A.20 B.25C.40 D.5012.已知離散型隨機(jī)變量X的分布列如下:X123P則數(shù)學(xué)期望()A. B.C.1 D.2二、填空題:本題共4小題,每小題5分,共20分。13.唐代詩人李頎的詩《古從軍行》開頭兩句說:“白日登山望烽火,黃昏飲馬傍交河.”詩中隱含著一個有趣的數(shù)學(xué)問題——“將軍飲馬”,即將軍在觀望烽火之后從山腳下某處出發(fā),先到河邊飲馬再回到軍營,怎樣走才能使總路程最短?在如圖所示的直角坐標(biāo)系xOy中,設(shè)軍營所在平面區(qū)域為{(x,y)|x2+y2≤},河岸線所在直線方程為x+2y-4=0.假定將軍從點P(,)處出發(fā),只要到達(dá)軍營所在區(qū)域即回到軍營,當(dāng)將軍選擇最短路程時,飲馬點A的縱坐標(biāo)為______.最短總路程為______14.若動直線分別與函數(shù)和的圖像交于A,B兩點,則的最小值為______15.在等比數(shù)列中,已知,則__________16.已知數(shù)列的前的前n項和為,數(shù)列的的前n項和為,則滿足的最小n的值為______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)某學(xué)校一航模小組進(jìn)行飛機(jī)模型飛行高度實驗,飛機(jī)模型在第一分鐘時間內(nèi)上升了米高度.若通過動力控制系統(tǒng),可使飛機(jī)模型在以后的每一分鐘上升的高度都是它在前一分鐘上升高度的(1)在此動力控制系統(tǒng)下,該飛機(jī)模型在第三分鐘內(nèi)上升的高度是多少米?(2)這個飛機(jī)模型上升的最大高度能超過米嗎?如果能,求出從第幾分鐘開始高度超過米;如果不能,請說明理由18.(12分)在三棱柱中,側(cè)面正方形的中心為點平面,且,點滿足(1)若平面,求的值;(2)求點到平面的距離;(3)若平面與平面所成角的正弦值為,求的值19.(12分)已知點是拋物線C:上的點,F(xiàn)為拋物線的焦點,且,直線l:與拋物線C相交于不同的兩點A,B.(1)求拋物線C的方程;(2)若,求k的值.20.(12分)某地從今年8月份開始啟動12-14歲人群新冠肺炎疫苗的接種工作,共有8千人需要接種疫苗.前4周的累計接種人數(shù)統(tǒng)計如下表:前x周1234累計接種人數(shù)y(千人)2.5344.5(1)求y關(guān)于的線性回歸方程;(2)根據(jù)(1)中所求的回歸方程,預(yù)計該地第幾周才能完成疫苗接種工作?參考公式:回歸方程中斜率和截距的最小二乘估計公式分別為,21.(12分)如圖①,直角梯形中,,,點,分別在,上,,,將四邊形沿折起,使得點,分別到達(dá)點,的位置,如圖②,平面平面,.(1)求證:平面平面;(2)求二面角的余弦值.22.(10分)已知首項為1的等比數(shù)列,滿足(1)求數(shù)列的通項公式;(2)求數(shù)列的前n項和
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】求出橢圓的下焦點,即拋物線的焦點,即可得解.【詳解】解:橢圓的下焦點為,即為拋物線焦點,∴,∴.故選:D.2、D【解析】因為拋物線方程可化為,所以拋物線的焦點到準(zhǔn)線的距離是,故選D.考點:1、拋物線的標(biāo)準(zhǔn)方程;2、拋物線的幾何性質(zhì).3、C【解析】利用拋物線的定義求解.【詳解】如圖所示:焦點為,設(shè)光線第一次交拋物線于點,第二次交拋物線于點,過焦點F,準(zhǔn)線方程為:,作垂直于準(zhǔn)線于點,作垂直于準(zhǔn)線于點,則,,,,故選:C4、A【解析】根據(jù)等比中項的性質(zhì)和等差數(shù)列的通項公式建立方程,可解得公差d得選項.【詳解】解:因為在等差數(shù)列中,,且,,,構(gòu)成等比數(shù)列,所以,即,所以,解得或,故選:A.5、A【解析】根據(jù)拋物線y2=4x上一點P到x軸的距離為2,得到點P(3,±2),然后利用拋物線的定義求解.【詳解】由題意,知拋物線y2=4x的準(zhǔn)線方程為x=-1,∵拋物線y2=4x上一點P到x軸的距離為2,則P(3,±2),∴點P到拋物線的準(zhǔn)線的距離為3+1=4,∴點P到拋物線的焦點F的距離為4.故選:A.6、D【解析】由已知條件可得,,…,即是周期為3的數(shù)列,即可求.【詳解】由題設(shè),知:,,,…,∴是周期為3的數(shù)列,而的余數(shù)為1,∴.故選:D.7、A【解析】過點且與原點O距離最遠(yuǎn)的直線垂直于直線,再由點斜式求解即可【詳解】過點且與原點O距離最遠(yuǎn)的直垂直于直線,,∴過點且與原點O距離最遠(yuǎn)的直線的斜率為,∴過點且與原點O距離最遠(yuǎn)的直線方程為:,即.故選:A8、D【解析】計算,然后等價于在(0,+∞)由2個不同的實數(shù)根,然后計算即可.【詳解】的定義域是(0,+∞),,若函數(shù)有兩個不同的極值點,則在(0,+∞)由2個不同的實數(shù)根,故,解得:,故選:D.【點睛】本題考查根據(jù)函數(shù)極值點個數(shù)求參,考查計算能力以及思維轉(zhuǎn)變能力,屬基礎(chǔ)題.9、A【解析】作點關(guān)于原點的對稱點,連接、、、,推導(dǎo)出、、三點共線,利用橢圓的定義可求得、、、,推導(dǎo)出,利用勾股定理可得出關(guān)于、的齊次等式,即可求得該橢圓的離心率.【詳解】作點關(guān)于原點的對稱點,連接、、、,則為、的中點,故四邊形為平行四邊形,故且,則,所以,,故、、三點共線,由橢圓定義,,有,所以,則,再由橢圓定義,有,因為,所以,在中,即,所以,離心率故選:A.10、A【解析】求出函數(shù)的導(dǎo)函數(shù),再求出,然后利用導(dǎo)數(shù)的幾何意義求解作答.【詳解】函數(shù),求導(dǎo)得:,則,而,于是得:,即,所以曲線在點處的切線方程為.故選:A11、A【解析】根據(jù)系統(tǒng)抽樣定義可求得結(jié)果【詳解】分段的間隔為故選:A12、D【解析】利用已知條件,結(jié)合期望公式求解即可【詳解】解:由題意可知:故選:D二、填空題:本題共4小題,每小題5分,共20分。13、①.②.【解析】求出P(,)關(guān)于直線x+2y4=0對稱點P'的坐標(biāo),再求出線段OP'與直線x+2y-4=0的交點A,再利用圓的幾何性質(zhì)可得結(jié)果.【詳解】設(shè)P(,)關(guān)于直線x+2y4=0的對稱點為P'(m,n),則解得因為從點P到軍營總路程最短,所以A為線段OP'與直線x+2y4=0的交點,聯(lián)立得y=(42y),解得y=.所以“將軍飲馬”的最短總路程為=,故答案為,.【點睛】本題主要考查對稱問題以及圓的幾何性質(zhì),屬于中檔題.解析幾何中點對稱問題,主要有以下三種題型:(1)點關(guān)于直線對稱,關(guān)于直線的對稱點,利用,且點在對稱軸上,列方程組求解即可;(2)直線關(guān)于直線對稱,利用已知直線與對稱軸的交點以及直線上特殊點的對稱點(利用(1)求解),兩點式求對稱直線方程;(3)曲線關(guān)于直線對稱,結(jié)合方法(1)利用逆代法求解.14、【解析】利用導(dǎo)數(shù)求出與平行的曲線的切線,再利用兩點間距離公式進(jìn)行求解即可.【詳解】設(shè)曲線的切點為,由,所以曲線的切線的斜率為,直線的斜率為,當(dāng)切線與平行時,即,即切點為,當(dāng)直線過切點時,有最小值,即,此時,解方程組:,,故答案為:【點睛】關(guān)鍵點睛:利用曲線的切線性質(zhì)進(jìn)行求解是解題的關(guān)鍵.15、32【解析】根據(jù)已知求出公比即可求出答案.【詳解】設(shè)等比數(shù)列的公比為,則,則,所以.故答案為:32.16、9【解析】由數(shù)列的前項和為,則當(dāng)時,,所以,所以數(shù)列的前和為,當(dāng)時,,當(dāng)時,,所以滿足的最小的值為.點睛:本題主要考查了等差數(shù)列與等比數(shù)列的綜合應(yīng)用問題,其中解答中涉及到數(shù)列的通項與的關(guān)系,推導(dǎo)數(shù)列的通項公式,以及等差、等比數(shù)列的前項和公式的應(yīng)用,熟記等差、等比數(shù)列的通項公式和前項和公式是解答的關(guān)鍵,著重考查了學(xué)生的推理與運算能力.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)不能,理由見解析.【解析】(1)由題得每分鐘上升的高度構(gòu)成等比數(shù)列,再利用等比數(shù)列的通項求解;(2)求出即得解.【小問1詳解】解:由題意,飛機(jī)模型每分鐘上升的高度構(gòu)成,公比的等比數(shù)列,則米.即飛機(jī)模型在第三分鐘內(nèi)上升的高度是米.【小問2詳解】解:不能超過米.依題意可得,所以這個飛機(jī)模型上升的最大高度不能超過米.18、(1);(2);(3)或.【解析】(1)連接ME,證明即可計算作答.(2)以為原點,的方向分別為軸正方向建立空間直角坐標(biāo)系,借助空間向量計算點到平面的距離即可.(3)由(2)中空間直角坐標(biāo)系,借助空間向量求平面與平面所成角的余弦即可計算作答.【小問1詳解】在三棱柱中,因,即點在上,連接ME,如圖,因平面面,面面,則有,而為中點,于是得為的中點,所以.【小問2詳解】在三棱柱中,面面,則點到平面的距離等于點到平面的距離,又為正方形,即,而平面,以為原點,的方向分別為軸正方向建立空間直角坐標(biāo)系,如圖,依題意,,則,,設(shè)平面的法向量為,則,令,得,又,則到平面的距離,所以點到平面的距離為.【小問3詳解】因,則,,設(shè)面的法向量為,則,令,得,于是得,而平面與平面所成角的正弦值為,則,即,整理得,解得或,所以的值是或.【點睛】易錯點睛:空間向量求二面角時,一是兩平面的法向量的夾角不一定是所求的二面角,二是利用方程思想進(jìn)行向量運算,要認(rèn)真細(xì)心,準(zhǔn)確計算.19、(1);(2)1或.【解析】(1)根據(jù)拋物線的定義,即可求得p值;(2)由過拋物線焦點的直線的性質(zhì),結(jié)合拋物線的定義,即可求出弦長AB【詳解】(1)拋物線C:的準(zhǔn)線為,由得:,得.所以拋物線的方程為.(2)設(shè),,由,,∴,∵直線l經(jīng)過拋物線C的焦點F,∴解得:,所以k的值為1或.【點睛】考核拋物線的定義及過焦點弦的求法20、(1);(2)預(yù)計第9周才能完成接種工作【解析】(1)利用最小二乘法原理求解即可;(2)解方程即得解.【小問1詳解】解:由表中數(shù)據(jù)得,,,,.所以所以y關(guān)于的線性回歸方程為.【小問2詳解】解:令,解得.所以預(yù)計第9周才能完成接種工作.21、(1)證明見解析(2)【解析】(1)根據(jù),,,,易證,再根據(jù)平面平面,,得到平面,進(jìn)而得到,再利用線面垂直的判定定理證明平面即可;(2)根據(jù)(1)知,,兩兩垂直,以,,的方向分別為,,軸的正方向建立空間直角坐標(biāo)系,分別求得平面的一個法向量和平面的一個法向量,設(shè)二面角的大小為,由求解.【小問1詳解】解:因為,,,所以,,又,所以是等腰直角三角形,即,所以.由平面幾何知識易知,所以,即.又平面平面,平面平面,,所以平面,又平面,所以.又,所以平面,又平面,所以平面平面
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- GB/T 23932-2025建筑用金屬面絕熱夾芯板
- 2026年農(nóng)業(yè)博物館展陳設(shè)計方法
- 2026湖南長沙市長郡湘府中學(xué)春季勞務(wù)教師招聘備考題庫及參考答案詳解一套
- 2026貴州貴陽白云區(qū)振華研究院招聘4人備考題庫及完整答案詳解1套
- 家用電器行業(yè)年度內(nèi)銷風(fēng)雨出海筑底細(xì)分找α
- 職業(yè)噪聲心血管疾病的綜合干預(yù)策略優(yōu)化-2
- 職業(yè)噪聲工人心血管健康促進(jìn)方案設(shè)計-1
- 職業(yè)健康風(fēng)險評估在健康管理中的整合策略
- 職業(yè)健康監(jiān)護(hù)檔案規(guī)范化管理要點
- 職業(yè)健康檔案電子化系統(tǒng)的用戶友好性設(shè)計
- 2026中國電信四川公用信息產(chǎn)業(yè)有限責(zé)任公司社會成熟人才招聘備考題庫完整參考答案詳解
- 2026年黃委會事業(yè)單位考試真題
- 供水管網(wǎng)及配套設(shè)施改造工程可行性研究報告
- 2026年及未來5年中國高帶寬存儲器(HBM)行業(yè)市場調(diào)查研究及投資前景展望報告
- 關(guān)于生產(chǎn)部管理制度
- CMA質(zhì)量手冊(2025版)-符合27025、評審準(zhǔn)則
- 法律盡調(diào)清單模板
- VTE防治護(hù)理年度專項工作匯報
- 招標(biāo)代理師項目溝通協(xié)調(diào)技巧
- 乙狀結(jié)腸癌教學(xué)課件
- ISO13485:2016醫(yī)療器械質(zhì)量管理手冊+全套程序文件+表單全套
評論
0/150
提交評論