版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
江蘇省無錫市江陰市2026屆數(shù)學高二上期末統(tǒng)考試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知,則“”是“”的()A.充分不必要條件 B.充要條件C.必要不充分條件 D.既不充分也不必要條件2.“直線的斜率不大于0”是“直線的傾斜角為鈍角”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件3.若函數(shù)單調(diào)遞增,則實數(shù)a的取值范圍為()A. B.C. D.4.過兩點、的直線的傾斜角為,則的值為()A.或 B.C. D.5.點,是橢圓的左焦點,是橢圓上任意一點,則的取值范圍是()A. B.C. D.6.某雙曲線的一條漸近方程為,且焦點為,則該雙曲線的方程是()A. B.C. D.7.已知拋物線的焦點為F,準線為l,點P在拋物線上,直線PF交x軸于Q點,且,則點P到準線l的距離為()A.4 B.5C.6 D.78.如圖所示,已知三棱錐,點,分別為,的中點,且,,,用,,表示,則等于()A. B.C. D.9.設點P是函數(shù)圖象上任意一點,點Q的坐標,當取得最小值時圓C:上恰有2個點到直線的距離為1,則實數(shù)r的取值范圍為()A. B.C. D.10.已知橢圓的兩焦點分別為,,P為橢圓上一點,且,則的面積等于()A.6 B.C. D.11.第24屆冬季奧林匹克運動會,將在2022年2月4日在中華人民共和國北京市和張家口市聯(lián)合舉行.這是中國歷史上第一次舉辦冬季奧運會,北京成為奧運史上第一個舉辦夏季奧林匹克運動會和冬季奧林匹克運動會的城市.同時中國也成為第一個實現(xiàn)奧運“全滿貫”(先后舉辦奧運會、殘奧會、青奧會、冬奧會、冬殘奧會)國家.根據(jù)規(guī)劃,國家體育場(鳥巢)成為北京冬奧會開、閉幕式的場館.國家體育場“鳥巢”的鋼結構鳥瞰圖如圖所示,內(nèi)外兩圈的鋼骨架是離心率相同的橢圓,若由外層橢圓長軸一端點和短軸一端點分別向內(nèi)層橢圓引切線,(如圖),且兩切線斜率之積等于,則橢圓的離心率為()A. B.C. D.12.幾何學史上有一個著名的米勒問題:“設點、是銳角的一邊上的兩點,試在邊上找一點,使得最大的.”如圖,其結論是:點為過、兩點且和射線相切的圓的切點.根據(jù)以上結論解決一下問題:在平面直角坐標系中,給定兩點,,點在軸上移動,當取最大值時,點的橫坐標是()A.B.C.或D.或二、填空題:本題共4小題,每小題5分,共20分。13.已知春季里,甲地每天下雨的概率為,乙地每天下雨的概率大于0,且甲、乙兩地下雨相互獨立,則春季的一天里,已知乙地下雨的條件下,甲地也下雨的概率為___________.14.若直線與圓有公共點,則b的取值范圍是_____15.曲線圍成的圖形的面積為___________.16.已知三個數(shù)2,,6成等比數(shù)列,則實數(shù)______三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)當時,求曲線在點處的切線方程;(2)若,且,討論函數(shù)的零點個數(shù).18.(12分)已知拋物線:上的點到其準線的距離為5.(1)求拋物線的方程;(2)已知為原點,點在拋物線上,若的面積為6,求點的坐標.19.(12分)設數(shù)列的前項和為,已知,且.(1)證明:數(shù)列為等比數(shù)列;(2)若,是否存在正整數(shù),使得對任意恒成立?若存在、求的值;若不存在,說明理由.20.(12分)已知橢圓:的離心率為,,分別為橢圓的左,右焦點,為橢圓上一點,的周長為.(1)求橢圓的方程;(2)為圓上任意一點,過作橢圓的兩條切線,切點分別為A,B,判斷是否為定值?若是,求出定值:若不是,說明理由,21.(12分)已知直線與圓.(1)當直線l恰好平分圓C的周長時,求m的值;(2)當直線l被圓C截得的弦長為時,求m的值.22.(10分)設數(shù)列的前n項和為,且,數(shù)列(1)求和的通項公式;(2)設數(shù)列的前n項和為,證明:
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】求得中的取值范圍,由此確定充分、必要條件.【詳解】,,所以“”是“”的充要條件.故選:B2、B【解析】直線傾斜角的范圍是[0°,180°),直線斜率為傾斜角(不為90°)的正切值,據(jù)此即可判斷求解.【詳解】直線的斜率不大于0,則直線l斜率可能等于零,此時直線傾斜角為0°,不為鈍角,故“直線的斜率不大于0”不是“直線的傾斜角為鈍角”充分條件;直線的傾斜角為鈍角時,直線的斜率為負,滿足直線的斜率不大于0,即“直線的傾斜角為鈍角”是“直線的斜率不大于0”的充分條件,“直線的斜率不大于0”是“直線的傾斜角為鈍角”的必要條件;綜上,“直線的斜率不大于0”是“直線的傾斜角為鈍角”的必要不充分條件.故選:B.3、D【解析】根據(jù)函數(shù)的單調(diào)性,可知其導數(shù)在R上恒成立,分離參數(shù),即可求得答案.【詳解】由題意可知單調(diào)遞增,則在R上恒成立,可得恒成立,當時,取最小值-1,故,故選:D4、D【解析】利用斜率公式可得出關于實數(shù)的等式與不等式,由此可解得實數(shù)的值.詳解】由斜率公式可得,即,解得.故選:D.5、A【解析】由,當三點共線時,取得最值【詳解】設是橢圓的右焦點,則又因為,,所以,則故選:A6、D【解析】設雙曲線的方程為,利用焦點為求出的值即可.【詳解】因為雙曲線的一條漸近方程為,且焦點為,所以可設雙曲線的方程為,則,,所以該雙曲線方程為.故選:D.7、C【解析】根據(jù)題干條件得到相似,進而得到,求出點P到準線l的距離.【詳解】由題意得:,準線方程為,因為,所以,故點P到準線l的距離為.故選:C8、A【解析】連接,先根據(jù)已知條件表示出,再根據(jù)求得結果.【詳解】連接,如下圖所示:因為為的中點,所以,又因為為的中點,所以,所以,故選:A.9、C【解析】先求出代表的是以為圓心,2為半徑的圓的位于x軸下方部分(包含x軸上的部分),數(shù)形結合得到取得最小值時a的值,得到圓心C,利用點到直線距離求出圓心C到直線的距離,數(shù)形結合求出半徑r的取值范圍.【詳解】,兩邊平方得:,即點P在以為圓心,2為半徑的圓的位于x軸下方部分(包含x軸上的部分),如圖所示:因為Q的坐標為,則在直線,過點A作⊥l于點,與半圓交于點,此時長為的最小值,則,所以直線:,與聯(lián)立得:,所以,解得:,則圓C:,則,圓心到直線的距離為,要想圓C上恰有2個點到直線的距離為1,則.故選:C10、B【解析】根據(jù)橢圓定義和余弦定理解得,結合三解形面積公式即可求解【詳解】由與是橢圓上一點,∴,兩邊平方可得,即,由于,,∴根據(jù)余弦定理可得,綜上可解得,∴的面積等于,故選:B11、B【解析】分別設內(nèi)外層橢圓方程為、,進而設切線、分別為、,聯(lián)立方程組整理并結合求、關于a、b、m的關系式,再結合已知得到a、b的齊次方程求離心率即可.【詳解】若內(nèi)層橢圓方程為,由離心率相同,可設外層橢圓方程為,∴,設切線為,切線為,∴,整理得,由知:,整理得,同理,,可得,∴,即,故.故選:B.【點睛】關鍵點點睛:根據(jù)內(nèi)外橢圓的離心率相同設橢圓方程,并寫出切線方程,聯(lián)立方程結合及已知條件,得到橢圓參數(shù)的齊次方程求離心率.12、A【解析】根據(jù)米勒問題的結論,點應該為過點、的圓與軸的切點,設圓心的坐標為,寫出圓的方程,并將點、的坐標代入可求出點的橫坐標.【詳解】解:設圓心的坐標為,則圓的方程為,將點、的坐標代入圓的方程得,解得或(舍去),因此,點的橫坐標為,故選:A.二、填空題:本題共4小題,每小題5分,共20分。13、##0.5【解析】根據(jù)條件概率求概率的方法即可求得答案.【詳解】設A表示“甲地每天下雨”,B表示“乙地每天下雨”,乙地每天下雨的概率為p,則,因為甲乙兩地下雨相互獨立,所以,于是在乙地下雨的條件下,甲地也下雨的概率為.故答案為:.14、【解析】直線與圓有交點,則圓心到直線的距離小于或等于半徑.【詳解】直線即,圓的圓心為,半徑為,若直線與圓有交點,則,解得,故實數(shù)取值范圍是.故答案為:15、##【解析】曲線圍成圖形關于軸,軸對稱,故只需要求出第一象限的面積即可.【詳解】將或代入方程,方程不發(fā)生改變,故曲線關于軸,軸對稱,因此只需求出第一象限的面積即可.當,時,曲線可化為:,表示的圖形為一個半圓,圍成的面積為,故曲線圍成的圖形的面積為.故答案:.16、【解析】由題意可得,從而可求出的值【詳解】因為三個數(shù)2,,6成等比數(shù)列,所以,解得故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1).(2)答案見解析.【解析】(1)求導函數(shù),求得,,由此可求得曲線在點處的切線方程;(2)求得導函數(shù),分和討論,當時,設,求導函數(shù),分析導函數(shù)的符號,得出所令函數(shù)的單調(diào)性,從而得函數(shù)的單調(diào)性,根據(jù)零點存在定理可得答案.【小問1詳解】解:當時,,所以,故,,所以曲線在點處的切線方程為.【小問2詳解】解:依題意,則,當時,,所以在上單調(diào)遞增;當時,設,此時,所以在上單調(diào)遞增,又,,所以存在,使得,且在上單調(diào)遞減,在上單調(diào)遞增.綜上所述,在上單調(diào)遞減,在上單調(diào)遞增.又,所以當,即時,有唯一零點在區(qū)間上,當,即時,在上無零點;故當時,在上有1個零點;當時,在上無零點.18、(1)(2)或【解析】(1)結合拋物線的定義求得,由此求得拋物線的方程.(2)設,根據(jù)三角形的面積列方程,求得的值,進而求得點的坐標.【小問1詳解】由拋物線的方程可得其準線方程,依拋物線的性質(zhì)得,解得.∴拋物線的方程為.【小問2詳解】將代入,得.所以,直線的方程為,即.設,則點到直線的距離,又,由題意得,解得或.∴點的坐標是或.19、(1)證明見解析(2)【解析】(1)由已知條件有,根據(jù)等比數(shù)列的定義即可證明;(2)由(1)求出及,進而可得,利用二次函數(shù)的性質(zhì)即可求解的最小值,從而可得答案.【小問1詳解】證明:因為,所以,又因為,所以,所以數(shù)列是首項為2公比為2的等比數(shù)列;【小問2詳解】解:由(1)知,,所以,所以,檢驗時也滿足上式,所以,所以,令,所以,故當即時,取得最小值,所以.20、(1)(2)是;【解析】(1)由離心率和焦點三角形周長可求出,結合關系式得出,即可得出橢圓的方程;(2)由平行于軸特殊情況求出,即;當平行于軸時,設過的直線為,聯(lián)立橢圓方程,令化簡得關于的二次方程,由韋達定理即可求解.【小問1詳解】由題可知,,解得,又,解得,故橢圓的標準方程為:;【小問2詳解】如圖所示,當平行于軸時,恰好平行于軸,,,;當不平行于軸時,設,設過點的直線為,聯(lián)立得,令得,化簡得,設,則,又,故,即.綜上所述,.21、(1);(2)1.【解析】(1)將圓C的圓心坐標代入直線l的方程計算作答.(2)由給定條件求出圓心C到直線l的距
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026江西南昌市社會福利院招聘2人備考題庫及答案詳解1套
- 2026北京中智集團崗位招聘4人備考題庫及答案詳解(新)
- 2026中國中信金融資產(chǎn)管理股份有限公司深圳分公司人才引進及社會招聘備考題庫(廣東)及1套完整答案詳解
- 2026吉林四平市梨樹農(nóng)墾集團董事長崗位選聘1人備考題庫(含答案詳解)
- 2026年宣威市發(fā)展和改革局招聘編制外工作人員備考題庫(5人)有答案詳解
- 2026年東營廣饒縣事業(yè)單位公開招聘工作人員備考題庫(35人)及答案詳解參考
- 2026天津市嘉誠中學教師招聘備考題庫及答案詳解參考
- 2026北京大學餐飲中心招聘勞動合同制人員1人備考題庫及答案詳解1套
- 2026江蘇揚州市僑城社區(qū)(籌)公益性崗位招聘1人備考題庫含答案詳解
- 2026廣西百色市科技館編外聘用崗位招聘3人備考題庫及一套參考答案詳解
- 2025福建省安全員C證考試(專職安全員)題庫附答案
- 中國話語體系中的國際傳播話語創(chuàng)新策略分析課題申報書
- 高標準基本農(nóng)田建設項目監(jiān)理工作總結報告
- 2026中國電氣裝備集團有限公司高層次人才招聘筆試備考試題及答案解析
- 消防知識培訓宣傳課件
- 2025-2026學年通-用版英語 高一上學期期末試題(含聽力音頻答案)
- 2025年國家基本公共衛(wèi)生服務考試試題(附答案)
- 25秋蘇教三年級上冊數(shù)學期末押題卷5套(含答案)
- 局部晚期腫瘤免疫放療新策略
- 食品加工廠乳制品設備安裝方案
- 高考英語3500詞分類整合記憶手冊(含完整中文釋義)
評論
0/150
提交評論