版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2026屆遼寧省沈陽市第九中學(xué)數(shù)學(xué)高二上期末綜合測(cè)試試題請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.若拋物線x=﹣my2的焦點(diǎn)到準(zhǔn)線的距離為2,則m=()A.﹣4 B.C. D.±2.直線的傾斜角為()A.60° B.30°C.120° D.150°3.古希臘數(shù)學(xué)家阿基米德利用“逼近法”得到橢圓的面積除以圓周率等于橢圓的長(zhǎng)半軸長(zhǎng)與短半軸長(zhǎng)的乘積,已知橢圓的面積為,、分別是的兩個(gè)焦點(diǎn),過的直線交于、兩點(diǎn),若的周長(zhǎng)為,則的離心率為()A. B.C. D.4.設(shè)數(shù)列的前項(xiàng)和為,數(shù)列是公比為2的等比數(shù)列,且,則()A.255 B.257C.127 D.1295.下列函數(shù)求導(dǎo)運(yùn)算正確的個(gè)數(shù)為()①;②;③;④.A.1 B.2C.3 D.46.已知集合A=()A. B.C.或 D.7.隨機(jī)地向兩個(gè)標(biāo)號(hào)分別為1與2的格子涂色,涂上紅色或綠色,在已知其中一個(gè)格子顏色為紅色條件下另一個(gè)格子顏色也為紅色的概率為()A. B.C. D.8.的展開式中的系數(shù)是()A. B.C. D.9.對(duì)于兩個(gè)平面、,“內(nèi)有三個(gè)點(diǎn)到的距離相等”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件10.已知空間中四點(diǎn),,,,則點(diǎn)D到平面ABC的距離為()A. B.C. D.011.曲線:在點(diǎn)處的切線方程為A. B.C. D.12.已知不等式的解集為,關(guān)于x的不等式的解集為B,且,則實(shí)數(shù)a的取值范圍為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知是橢圓的左、右焦點(diǎn),在橢圓上運(yùn)動(dòng),當(dāng)?shù)闹底钚r(shí),的面積為_______14.在等比數(shù)列中,,則______15.2021年7月24日,在東京奧運(yùn)會(huì)女子10米氣步槍決賽中,中國(guó)選手楊倩以251.8環(huán)的總成績(jī)奪得金牌,為中國(guó)代表團(tuán)摘得本屆奧運(yùn)會(huì)首金.已知楊倩其中5次射擊命中的環(huán)數(shù)如下:10.8,10.6,10.6,10.7,9.8,則這組數(shù)據(jù)的方差為______16.已知函數(shù)有三個(gè)零點(diǎn),則正實(shí)數(shù)a的取值范圍為_________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù),從下列兩個(gè)條件中選擇一個(gè)使得數(shù)列{an}成等比數(shù)列.條件1:數(shù)列{f(an)}是首項(xiàng)為4,公比為2的等比數(shù)列;條件2:數(shù)列{f(an)}是首項(xiàng)為4,公差為2的等差數(shù)列.(1)求數(shù)列{an}的通項(xiàng)公式;(2)求數(shù)列的前n項(xiàng)和.18.(12分)已知等差數(shù)列的首項(xiàng)為2,公差為8.在中每相鄰兩項(xiàng)之間插入三個(gè)數(shù),使它們與原數(shù)列的項(xiàng)一起構(gòu)成一個(gè)新的等差數(shù)列.(1)求數(shù)列的通項(xiàng)公式;(2)若,,,,是從中抽取的若干項(xiàng)按原來的順序排列組成的一個(gè)等比數(shù)列,,,令,求數(shù)列的前項(xiàng)和.19.(12分)已知函數(shù)其中.(1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;(2)當(dāng)時(shí),函數(shù)有兩個(gè)零點(diǎn),,滿足,證明.20.(12分)如圖,四棱錐中,是邊長(zhǎng)為2的正三角形,底面為菱形,且平面平面,,為上一點(diǎn),滿足.(1)證明:;(2)求二面角的余弦值.21.(12分)在中,角的對(duì)邊分別為,且.(1)求;(2)若,的面積為,求.22.(10分)解答下列兩個(gè)小題:(1)雙曲線:離心率為,且點(diǎn)在雙曲線上,求的方程;(2)雙曲線實(shí)軸長(zhǎng)為2,且雙曲線與橢圓的焦點(diǎn)相同,求雙曲線的標(biāo)準(zhǔn)方程
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】把拋物線的方程化為標(biāo)準(zhǔn)方程,由焦點(diǎn)到準(zhǔn)線的距離為,即可得到結(jié)果,得到答案.【詳解】由題意,拋物線,可得,又由拋物線的焦點(diǎn)到準(zhǔn)線的距離為2,即,解得.故選D.【點(diǎn)睛】本題主要考查了拋物線的標(biāo)準(zhǔn)方程,以及簡(jiǎn)單的幾何性質(zhì)的應(yīng)用,其中解答中熟記拋物線的焦點(diǎn)到準(zhǔn)線的距離為是解答的關(guān)鍵,著重考查了推理與計(jì)算能力,屬于基礎(chǔ)題.2、C【解析】求出斜率,根據(jù)斜率與傾斜角的關(guān)系,即可求解.【詳解】解:,即,直線的斜率為,即直線的傾斜角為120°.故選:C.3、A【解析】本題首先可根據(jù)題意得出,然后根據(jù)的周長(zhǎng)為得出,最后根據(jù)求出的值,即可求出的離心率.【詳解】因?yàn)闄E圓的面積為,所以長(zhǎng)半軸長(zhǎng)與短半軸長(zhǎng)的乘積,因?yàn)榈闹荛L(zhǎng)為,所以根據(jù)橢圓的定義易知,,,,則的離心率,故選:A.4、C【解析】由題設(shè)可得,再由即可求值.【詳解】由數(shù)列是公比為2的等比數(shù)列,且,∴,即,∴.故選:C.5、A【解析】根據(jù)導(dǎo)數(shù)的運(yùn)算法則和導(dǎo)數(shù)的基本公式計(jì)算后即可判斷【詳解】解:①,故錯(cuò)誤;②,故正確;③,故錯(cuò)誤;④,故錯(cuò)誤.所以求導(dǎo)運(yùn)算正確的個(gè)數(shù)為1.故選:A.6、A【解析】先求出集合,再根據(jù)集合的交集運(yùn)算,即可求出結(jié)果.【詳解】因?yàn)榧?,所?故選:A.7、D【解析】根據(jù)古典概型的概率公式即可得出答案.【詳解】在已知其中一個(gè)格子顏色為紅色條件下另一個(gè)格子顏色有紅色與綠色兩種情況,其中一個(gè)格子顏色為紅色條件下另一個(gè)格子顏色也為紅色的情況有1種,所以在已知其中一個(gè)格子顏色為紅色條件下另一個(gè)格子顏色也為紅色的概率為.故選:D.8、B【解析】根據(jù)二項(xiàng)式定理求出答案即可.【詳解】的展開式中的系數(shù)是故選:B9、B【解析】根據(jù)平面的性質(zhì)分別判斷充分性和必要性.【詳解】充分性:若內(nèi)有三個(gè)點(diǎn)到的距離相等,當(dāng)這三個(gè)點(diǎn)不在一條直線上時(shí),可得;當(dāng)這三個(gè)點(diǎn)在一條直線上時(shí),則、平行或相交,故充分性不成立;必要性:若,則內(nèi)每個(gè)點(diǎn)到的距離相等,故必要性成立,所以“內(nèi)有三個(gè)點(diǎn)到的距離相等”是“”的必要不充分條件.故選:B.10、C【解析】根據(jù)題意,求得平面的一個(gè)法向量,結(jié)合距離公式,即可求解.【詳解】由題意,空間中四點(diǎn),,,,可得,設(shè)平面的法向量為,則,令,可得,所以,所以點(diǎn)D到平面ABC的距離為.故選:C.11、A【解析】因?yàn)?,所以曲線在點(diǎn)(1,0)處的切線的斜率為,所以切線方程為,即,選A12、B【解析】解出不等式可得集合,由可得,然后可得在上恒成立,然后分離參數(shù)求解即可.【詳解】由得,,解得,因?yàn)?,所以所以可得在上恒成立,即在上恒成立,故只需,,?dāng)時(shí),,故故選:B二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)橢圓定義得出,進(jìn)而對(duì)進(jìn)行化簡(jiǎn),結(jié)合基本不等式得出的最小值,并求出的值,進(jìn)而求出面積.【詳解】由橢圓定義可知,,所以,,當(dāng)且僅當(dāng),即時(shí)取“=”.又,所以.所以,由勾股定理可知:,所以.故答案為:.14、【解析】利用等比數(shù)列性質(zhì)和通項(xiàng)公式可求得,根據(jù)可求得結(jié)果.【詳解】,又,,.故答案為:.15、128【解析】先求均值,再由方差公式計(jì)算【詳解】由已知,所以,故答案為:16、【解析】求導(dǎo)易得函數(shù)有兩個(gè)極值點(diǎn)和,根據(jù)題意,由求解.【詳解】由,可得函數(shù)有兩個(gè)極值點(diǎn)和,,,若函數(shù)有三個(gè)零點(diǎn),必有解得或故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)根據(jù)所給的條件分別計(jì)算后即可判斷,再通過滿足題意的求出通項(xiàng);(2)由(1)可得,再通過錯(cuò)位相減法求和即可.【小問1詳解】若選擇條件1,則有,可得,不滿足題意;若選擇條件2,則有,可得,滿足題意,故.【小問2詳解】由(1)可得,所以………①因此有……….②①②可得,即,化簡(jiǎn)得.18、(1);(2)【解析】(1)由題意在中每相鄰兩項(xiàng)之間插入三個(gè)數(shù),使它們與原數(shù)列的項(xiàng)一起構(gòu)成一個(gè)新的等差數(shù)列,可知的公差,進(jìn)而可求出其通項(xiàng)公式;(2)根據(jù)題意可得,進(jìn)而得到,再代入中得,利用錯(cuò)位相減即可求出前項(xiàng)和.【小問1詳解】由于等差數(shù)列的公差為8,在中每相鄰兩項(xiàng)之間插入三個(gè)數(shù),使它們與原數(shù)列的項(xiàng)一起構(gòu)成一個(gè)新的等差數(shù)列,則的公差,的首項(xiàng)和首項(xiàng)相同為2,則數(shù)列的通項(xiàng)公式為.【小問2詳解】由于,是等比數(shù)列的前兩項(xiàng),且,,則,則等比數(shù)列的公比為3,則,即,.①.②.①減去②得..19、(1)單調(diào)遞增區(qū)間,無遞減區(qū)間;(2)證明見解析【解析】(1)求出函數(shù)的導(dǎo)數(shù),從而判斷其正負(fù),確定函數(shù)的單調(diào)區(qū)間;(2)根據(jù)題意可得到,進(jìn)而變形為,然后換元令,將證明的問題轉(zhuǎn)換為成立的問題,從而構(gòu)造新函數(shù),求新函數(shù)的導(dǎo)數(shù),判斷其單調(diào)性,求其最值,進(jìn)而證明不等式成立.【小問1詳解】時(shí),,,令,當(dāng)時(shí),,當(dāng)時(shí),,故,則,故是單調(diào)遞增函數(shù),即的單調(diào)遞增區(qū)間為,無遞減區(qū)間;【小問2詳解】當(dāng)時(shí),函數(shù)有兩個(gè)零點(diǎn),,滿足,即,所以,則,令,由于,則,則x2=tx故,要證明,只需證明,即證,設(shè),令,則,當(dāng)時(shí),,即在時(shí)為增函數(shù),故,即,所以在時(shí)為增函數(shù),即,即,故,即.【點(diǎn)睛】本題考查了利用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間以及涉及到零點(diǎn)的不等式的證明問題,解答時(shí)要注意導(dǎo)數(shù)的應(yīng)用,主要是根據(jù)導(dǎo)數(shù)的正負(fù)判斷函數(shù)的單調(diào)性,進(jìn)而求函數(shù)極值或最值,解答的關(guān)鍵時(shí)對(duì)函數(shù)式或者不等式進(jìn)行合理的變形,進(jìn)而能構(gòu)造新的函數(shù),利用新的函數(shù)的單調(diào)性或最值達(dá)到證明不等式成立的目的m.20、(1)證明見解析;(2).【解析】(1)設(shè)為中點(diǎn),連接,根據(jù),證明平面得到答案.(2)以為原點(diǎn),,,分別為,,軸建立空間直角坐標(biāo)系,計(jì)算各點(diǎn)坐標(biāo),計(jì)算平面和平面的法向量,根據(jù)向量夾角公式計(jì)算得到答案.【詳解】(1)設(shè)為中點(diǎn),連接,,∵,∴,又∵底面四邊形為菱形,,∴為等邊三角形,∴,又∴,,平面,∴平面,而平面,∴.(2)∵平面平面,平面平面,,∴平面以為原點(diǎn),,,分別為,,軸建立空間直角坐標(biāo)系,則,,,,,,由,,,即,∴,,,設(shè)為平面的法向量,則由,令,得,,∴,設(shè)為平面的法向量,則由,令,得,,∴,設(shè)二面角的平面角為,則,∴二面角的的余弦值為.【點(diǎn)睛】本題考查了線線垂直,二面角,意在考查學(xué)生的計(jì)算能力和空間想象能力,建立空間直角坐標(biāo)系是解題的關(guān)鍵.21、(1);(2).【解析】(1)由正弦定理得到,兩邊消去公因式得到,化一即可求得角A;(2)因?yàn)?,所以,再結(jié)合余弦定理得到結(jié)果.【詳解】(1)由,得,因?yàn)?,所以,整理得:,因,所?(2)因?yàn)?,所以,因?yàn)榧?,所以,?【點(diǎn)睛】本題主要考查正弦定理及余弦定理的應(yīng)用以及三角形面積公式,屬于難題.在解與三角形有關(guān)的問題時(shí),正弦定理、余弦定理是兩個(gè)主要依據(jù).解三角形時(shí),有時(shí)可用正弦定理,有時(shí)也可用余弦定理,應(yīng)注意用哪一個(gè)定理更方便、簡(jiǎn)捷一般來說,當(dāng)條件中同時(shí)出現(xiàn)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年農(nóng)業(yè)博物館展陳設(shè)計(jì)方法
- 2026湖南長(zhǎng)沙市長(zhǎng)郡湘府中學(xué)春季勞務(wù)教師招聘?jìng)淇碱}庫(kù)及參考答案詳解一套
- 2026貴州貴陽白云區(qū)振華研究院招聘4人備考題庫(kù)及完整答案詳解1套
- 家用電器行業(yè)年度內(nèi)銷風(fēng)雨出海筑底細(xì)分找α
- 職業(yè)噪聲心血管疾病的綜合干預(yù)策略優(yōu)化-2
- 職業(yè)噪聲工人心血管健康促進(jìn)方案設(shè)計(jì)-1
- 職業(yè)健康風(fēng)險(xiǎn)評(píng)估在健康管理中的整合策略
- 職業(yè)健康監(jiān)護(hù)檔案規(guī)范化管理要點(diǎn)
- 職業(yè)健康檔案電子化系統(tǒng)的用戶友好性設(shè)計(jì)
- 職業(yè)健康促進(jìn)醫(yī)療信息化建設(shè)路徑
- 2026中國(guó)電信四川公用信息產(chǎn)業(yè)有限責(zé)任公司社會(huì)成熟人才招聘?jìng)淇碱}庫(kù)完整參考答案詳解
- 2026年黃委會(huì)事業(yè)單位考試真題
- 供水管網(wǎng)及配套設(shè)施改造工程可行性研究報(bào)告
- 2026年及未來5年中國(guó)高帶寬存儲(chǔ)器(HBM)行業(yè)市場(chǎng)調(diào)查研究及投資前景展望報(bào)告
- 關(guān)于生產(chǎn)部管理制度
- CMA質(zhì)量手冊(cè)(2025版)-符合27025、評(píng)審準(zhǔn)則
- 大數(shù)據(jù)驅(qū)動(dòng)下的塵肺病發(fā)病趨勢(shì)預(yù)測(cè)模型
- 炎德英才大聯(lián)考雅禮中學(xué)2026屆高三月考試卷英語(五)(含答案)
- 法律盡調(diào)清單模板
- 【道 法】期末綜合復(fù)習(xí) 課件-2025-2026學(xué)年統(tǒng)編版道德與法治七年級(jí)上冊(cè)
- VTE防治護(hù)理年度專項(xiàng)工作匯報(bào)
評(píng)論
0/150
提交評(píng)論