江蘇省鹽城市景山中學(xué)2026屆數(shù)學(xué)高三第一學(xué)期期末達標(biāo)測試試題含解析_第1頁
江蘇省鹽城市景山中學(xué)2026屆數(shù)學(xué)高三第一學(xué)期期末達標(biāo)測試試題含解析_第2頁
江蘇省鹽城市景山中學(xué)2026屆數(shù)學(xué)高三第一學(xué)期期末達標(biāo)測試試題含解析_第3頁
江蘇省鹽城市景山中學(xué)2026屆數(shù)學(xué)高三第一學(xué)期期末達標(biāo)測試試題含解析_第4頁
江蘇省鹽城市景山中學(xué)2026屆數(shù)學(xué)高三第一學(xué)期期末達標(biāo)測試試題含解析_第5頁
已閱讀5頁,還剩15頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

江蘇省鹽城市景山中學(xué)2026屆數(shù)學(xué)高三第一學(xué)期期末達標(biāo)測試試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設(shè)實數(shù)x,y滿足條件x+y-2?02x-y+3?0x-y?0則A.1 B.2 C.3 D.42.在中,,,分別為角,,的對邊,若的面為,且,則()A.1 B. C. D.3.已知是虛數(shù)單位,若,,則實數(shù)()A.或 B.-1或1 C.1 D.4.設(shè),則復(fù)數(shù)的模等于()A. B. C. D.5.拋物線的焦點為,則經(jīng)過點與點且與拋物線的準(zhǔn)線相切的圓的個數(shù)有()A.1個 B.2個 C.0個 D.無數(shù)個6.如圖在一個的二面角的棱有兩個點,線段分別在這個二面角的兩個半平面內(nèi),且都垂直于棱,且,則的長為()A.4 B. C.2 D.7.已知函數(shù)在上都存在導(dǎo)函數(shù),對于任意的實數(shù)都有,當(dāng)時,,若,則實數(shù)的取值范圍是()A. B. C. D.8.已知集合,,,則()A. B. C. D.9.拋物線的焦點為F,點為該拋物線上的動點,若點,則的最小值為()A. B. C. D.10.已知函數(shù)若函數(shù)在上零點最多,則實數(shù)的取值范圍是()A. B. C. D.11.已知拋物線經(jīng)過點,焦點為,則直線的斜率為()A. B. C. D.12.函數(shù)的部分圖象大致為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.如果拋物線上一點到準(zhǔn)線的距離是6,那么______.14.已知實數(shù),對任意,有,且,則______.15.已知雙曲線的左右焦點分別關(guān)于兩漸近線對稱點重合,則雙曲線的離心率為_____16.如圖,在長方體中,,E,F(xiàn),G分別為的中點,點P在平面ABCD內(nèi),若直線平面EFG,則線段長度的最小值是________________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在多面體中,四邊形是菱形,,,,平面,,,是的中點.(Ⅰ)求證:平面平面;(ⅠⅠ)求直線與平面所成的角的正弦值.18.(12分)已知函數(shù)(),且只有一個零點.(1)求實數(shù)a的值;(2)若,且,證明:.19.(12分)設(shè)函數(shù),.(Ⅰ)討論的單調(diào)性;(Ⅱ)時,若,,求證:.20.(12分)在中,內(nèi)角的對邊分別是,滿足條件.(1)求角;(2)若邊上的高為,求的長.21.(12分)已知函數(shù),.(1)當(dāng)時,求不等式的解集;(2)若函數(shù)的圖象與軸恰好圍成一個直角三角形,求的值.22.(10分)已知橢圓的短軸的兩個端點分別為、,焦距為.(1)求橢圓的方程;(2)已知直線與橢圓有兩個不同的交點、,設(shè)為直線上一點,且直線、的斜率的積為.證明:點在軸上.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】

畫出可行域和目標(biāo)函數(shù),根據(jù)目標(biāo)函數(shù)的幾何意義平移得到答案.【詳解】如圖所示:畫出可行域和目標(biāo)函數(shù),z=x+y+1,即y=-x+z-1,z表示直線在y軸的截距加上1,根據(jù)圖像知,當(dāng)x+y=2時,且x∈-13,1時,故選:C.【點睛】本題考查了線性規(guī)劃問題,畫出圖像是解題的關(guān)鍵.2、D【解析】

根據(jù)三角形的面積公式以及余弦定理進行化簡求出的值,然后利用兩角和差的正弦公式進行求解即可.【詳解】解:由,得,∵,∴,即即,則,∵,∴,∴,即,則,故選D.【點睛】本題主要考查解三角形的應(yīng)用,結(jié)合三角形的面積公式以及余弦定理求出的值以及利用兩角和差的正弦公式進行計算是解決本題的關(guān)鍵.3、B【解析】

由題意得,,然后求解即可【詳解】∵,∴.又∵,∴,∴.【點睛】本題考查復(fù)數(shù)的運算,屬于基礎(chǔ)題4、C【解析】

利用復(fù)數(shù)的除法運算法則進行化簡,再由復(fù)數(shù)模的定義求解即可.【詳解】因為,所以,由復(fù)數(shù)模的定義知,.故選:C【點睛】本題考查復(fù)數(shù)的除法運算法則和復(fù)數(shù)的模;考查運算求解能力;屬于基礎(chǔ)題.5、B【解析】

圓心在的中垂線上,經(jīng)過點,且與相切的圓的圓心到準(zhǔn)線的距離與到焦點的距離相等,圓心在拋物線上,直線與拋物線交于2個點,得到2個圓.【詳解】因為點在拋物線上,又焦點,,由拋物線的定義知,過點、且與相切的圓的圓心即為線段的垂直平分線與拋物線的交點,這樣的交點共有2個,故過點、且與相切的圓的不同情況種數(shù)是2種.故選:.【點睛】本題主要考查拋物線的簡單性質(zhì),本題解題的關(guān)鍵是求出圓心的位置,看出圓心必須在拋物線上,且在垂直平分線上.6、A【解析】

由,兩邊平方后展開整理,即可求得,則的長可求.【詳解】解:,,,,,,.,,故選:.【點睛】本題考查了向量的多邊形法則、數(shù)量積的運算性質(zhì)、向量垂直與數(shù)量積的關(guān)系,考查了空間想象能力,考查了推理能力與計算能力,屬于中檔題.7、B【解析】

先構(gòu)造函數(shù),再利用函數(shù)奇偶性與單調(diào)性化簡不等式,解得結(jié)果.【詳解】令,則當(dāng)時,,又,所以為偶函數(shù),從而等價于,因此選B.【點睛】本題考查利用函數(shù)奇偶性與單調(diào)性求解不等式,考查綜合分析求解能力,屬中檔題.8、D【解析】

根據(jù)集合的基本運算即可求解.【詳解】解:,,,則故選:D.【點睛】本題主要考查集合的基本運算,屬于基礎(chǔ)題.9、B【解析】

通過拋物線的定義,轉(zhuǎn)化,要使有最小值,只需最大即可,作出切線方程即可求出比值的最小值.【詳解】解:由題意可知,拋物線的準(zhǔn)線方程為,,過作垂直直線于,由拋物線的定義可知,連結(jié),當(dāng)是拋物線的切線時,有最小值,則最大,即最大,就是直線的斜率最大,設(shè)在的方程為:,所以,解得:,所以,解得,所以,.故選:.【點睛】本題考查拋物線的基本性質(zhì),直線與拋物線的位置關(guān)系,轉(zhuǎn)化思想的應(yīng)用,屬于基礎(chǔ)題.10、D【解析】

將函數(shù)的零點個數(shù)問題轉(zhuǎn)化為函數(shù)與直線的交點的個數(shù)問題,畫出函數(shù)的圖象,易知直線過定點,故與在時的圖象必有兩個交點,故只需與在時的圖象有兩個交點,再與切線問題相結(jié)合,即可求解.【詳解】由圖知與有個公共點即可,即,當(dāng)設(shè)切點,則,.故選:D.【點睛】本題考查了函數(shù)的零點個數(shù)的問題,曲線的切線問題,注意運用轉(zhuǎn)化思想和數(shù)形結(jié)合思想,屬于較難的壓軸題.11、A【解析】

先求出,再求焦點坐標(biāo),最后求的斜率【詳解】解:拋物線經(jīng)過點,,,,故選:A【點睛】考查拋物線的基礎(chǔ)知識及斜率的運算公式,基礎(chǔ)題.12、B【解析】

圖像分析采用排除法,利用奇偶性判斷函數(shù)為奇函數(shù),再利用特值確定函數(shù)的正負情況。【詳解】,故奇函數(shù),四個圖像均符合。當(dāng)時,,,排除C、D當(dāng)時,,,排除A。故選B?!军c睛】圖像分析采用排除法,一般可供判斷的主要有:奇偶性、周期性、單調(diào)性、及特殊值。二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

先求出拋物線的準(zhǔn)線方程,然后根據(jù)點到準(zhǔn)線的距離為6,列出,直接求出結(jié)果.【詳解】拋物線的準(zhǔn)線方程為,由題意得,解得.∵點在拋物線上,∴,∴,故答案為:.【點睛】本小題主要考查拋物線的定義,屬于基礎(chǔ)題.14、-1【解析】

由二項式定理及展開式系數(shù)的求法得,又,所以,令得:,所以,得解.【詳解】由,且,則,又,所以,令得:,所以,故答案為:.【點睛】本題考查了二項式定理及展開式系數(shù)的求法,意在考查學(xué)生對這些知識的理解掌握水平.15、【解析】

雙曲線的左右焦點分別關(guān)于兩條漸近線的對稱點重合,可得一條漸近線的斜率為1,即,即可求出雙曲線的離心率.【詳解】解:雙曲線的左右焦點分別關(guān)于兩條漸近線的對稱點重合,一條漸近線的斜率為1,即,,,故答案為:.【點睛】本題考查雙曲線的離心率,考查學(xué)生的計算能力,確定一條漸近線的斜率為1是關(guān)鍵,屬于基礎(chǔ)題.16、【解析】

如圖,連接,證明平面平面EFG.因為直線平面EFG,所以點P在直線AC上.當(dāng)時.線段的長度最小,再求此時的得解.【詳解】如圖,連接,因為E,F(xiàn),G分別為AB,BC,的中點,所以,平面,則平面.因為,所以同理得平面,又.所以平面平面EFG.因為直線平面EFG,所以點P在直線AC上.在中,,故當(dāng)時.線段的長度最小,最小值為.故答案為:【點睛】本題主要考查空間位置關(guān)系的證明,考查立體幾何中的軌跡問題,意在考查學(xué)生對這些知識的理解掌握水平.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(Ⅰ)詳見解析;(Ⅱ).【解析】試題分析:(Ⅰ)連接交于,得,所以面,又,得面,即可利用面面平行的判定定理,證得結(jié)論;(Ⅱ)如圖,以O(shè)為坐標(biāo)原點,建立空間直角坐標(biāo)系,求的平面的一個法向量,利用向量和向量夾角公式,即可求解與平面所成角的正弦值.試題解析:(Ⅰ)連接BD交AC于O,易知O是BD的中點,故OG//BE,BE面BEF,OG在面BEF外,所以O(shè)G//面BEF;又EF//AC,AC在面BEF外,AC//面BEF,又AC與OG相交于點O,面ACG有兩條相交直線與面BEF平行,故面ACG∥面BEF;(Ⅱ)如圖,以O(shè)為坐標(biāo)原點,分別以O(shè)C、OD、OF為x、y、z軸建立空間直角坐標(biāo)系,則,,,,,,,設(shè)面ABF的法向量為,依題意有,,令,,,,,直線AD與面ABF成的角的正弦值是.18、(1)(2)證明見解析【解析】

(1)求導(dǎo)可得在上,在上,所以函數(shù)在時,取最小值,由函數(shù)只有一個零點,觀察可知則有,即可求得結(jié)果.(2)由(1)可知為最小值,則構(gòu)造函數(shù)(),求導(dǎo)借助基本不等式可判斷為減函數(shù),即可得,即則有,由已知可得,由,可知,因為時,為增函數(shù),即可得證得結(jié)論.【詳解】(1)().因為,所以,令得,,且,,在上;在上;所以函數(shù)在時,取最小值,當(dāng)最小值為0時,函數(shù)只有一個零點,易得,所以,解得.(2)由(1)得,函數(shù),設(shè)(),則,設(shè)(),則,,所以為減函數(shù),所以,即,所以,即,又,所以,又當(dāng)時,為增函數(shù),所以,即.【點睛】本題考查借助導(dǎo)數(shù)研究函數(shù)的單調(diào)性及最值,考查學(xué)生分析問題的能力,及邏輯推理能力,難度困難.19、(1)證明見解析;(2)證明見解析.【解析】

(1)首先對函數(shù)求導(dǎo),再根據(jù)參數(shù)的取值,討論的正負,即可求出關(guān)于的單調(diào)性即可;(2)首先通過構(gòu)造新函數(shù),討論新函數(shù)的單調(diào)性,根據(jù)新函數(shù)的單調(diào)性證明.【詳解】(1),令,則,令得,當(dāng)時,則在單調(diào)遞減,當(dāng)時,則在單調(diào)遞增,所以,當(dāng)時,,即,則在上單調(diào)遞增,當(dāng)時,,易知當(dāng)時,,當(dāng)時,,由零點存在性定理知,,不妨設(shè),使得,當(dāng)時,,即,當(dāng)時,,即,當(dāng)時,,即,所以在和上單調(diào)遞增,在單調(diào)遞減;(2)證明:構(gòu)造函數(shù),,,,整理得,,(當(dāng)時等號成立),所以在上單調(diào)遞增,則,所以在上單調(diào)遞增,,這里不妨設(shè),欲證,即證由(1)知時,在上單調(diào)遞增,則需證,由已知有,只需證,即證,由在上單調(diào)遞增,且時,有,故成立,從而得證.【點睛】本題主要考查了導(dǎo)數(shù)含參分類討論單調(diào)性,借助構(gòu)造函數(shù)和單調(diào)性證明不等式,屬于難題.20、(1).(2)【解析】

(1)利用正弦定理的邊角互化可得,再根據(jù),利用兩角和的正弦公式即可求解.(2)已知,由知,在中,解出即可.【詳解】(1)由正弦定理知由己知,而∴,(2)已知,則由知先求∴∴∴【點睛】本題主要考查了正弦定理解三角形、三角形的性質(zhì)、兩角和的正弦公式,需熟記定理與公式,屬于基礎(chǔ)題.21、(1)(2)【解析】

(1)當(dāng)時,,由可得,(所以,解得,所以不等式的解集為.(2)由題可得,因為函數(shù)的圖象與軸恰好圍成一個直角三角形,所以,解得,當(dāng)時,,函數(shù)的圖象與軸沒有交點,不符合題意;當(dāng)時,,函數(shù)的圖象與軸恰好圍成一個直角三角形,符合題意.綜上,可得.22、(1);(2)見解析

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論