2026屆河南省鶴壁市第一中學(xué)數(shù)學(xué)高一上期末質(zhì)量檢測試題含解析_第1頁
2026屆河南省鶴壁市第一中學(xué)數(shù)學(xué)高一上期末質(zhì)量檢測試題含解析_第2頁
2026屆河南省鶴壁市第一中學(xué)數(shù)學(xué)高一上期末質(zhì)量檢測試題含解析_第3頁
2026屆河南省鶴壁市第一中學(xué)數(shù)學(xué)高一上期末質(zhì)量檢測試題含解析_第4頁
2026屆河南省鶴壁市第一中學(xué)數(shù)學(xué)高一上期末質(zhì)量檢測試題含解析_第5頁
已閱讀5頁,還剩6頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2026屆河南省鶴壁市第一中學(xué)數(shù)學(xué)高一上期末質(zhì)量檢測試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知過點和的直線與斜率為一2的直線平行,則m的值是A.-8 B.0C.2 D.102.已知集合,集合,則A. B.C. D.3.角的終邊過點,則()A. B.C. D.4.已知函數(shù)在[2,3]上單調(diào)遞減,則實數(shù)a的取值范圍是()A. B.C. D.5.已知,則的值是A.1 B.3C. D.6.若,的終邊(均不在y軸上)關(guān)于x軸對稱,則()A. B.C. D.7.A B.C.1 D.8.設(shè)集合,,,則A. B.C. D.9.若函數(shù)在R上單調(diào)遞減,則實數(shù)a的取值范圍是()A. B.C. D.10.在去年的足球聯(lián)賽上,一隊每場比賽平均失球個數(shù)是1.5,全年比賽失球個數(shù)的標(biāo)準(zhǔn)差是1.1;二隊每場比賽平均失球個數(shù)是2.1,全年比賽失球個數(shù)的標(biāo)準(zhǔn)差是0.4.則下列說法錯誤的是()A.平均來說一隊比二隊防守技術(shù)好 B.二隊很少失球C.一隊有時表現(xiàn)差,有時表現(xiàn)又非常好 D.二隊比一隊技術(shù)水平更不穩(wěn)定二、填空題:本大題共6小題,每小題5分,共30分。11.已知函數(shù)是偶函數(shù),它在上是減函數(shù),若滿足,則的取值范圍是___________.12.若命題,,則的否定為___________.13.已知函數(shù),則不等式的解集為______14.若,則______.15.函數(shù)的定義域是_____________16.寫出一個滿足,且的函數(shù)的解析式__________三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.某公司擬設(shè)計一個扇環(huán)形狀的花壇(如圖所示),該扇環(huán)是由以點為圓心的兩個同心圓弧和延長后通過點,的兩條線段圍成.設(shè)圓弧和圓弧所在圓的半徑分別為米,圓心角為θ(弧度)(1)若,,求花壇的面積;(2)設(shè)計時需要考慮花壇邊緣(實線部分)的裝飾問題,已知直線部分的裝飾費用為60元/米,弧線部分的裝飾費用為90元/米,預(yù)算費用總計1200元,問線段AD的長度為多少時,花壇的面積最大?18.已知全集,,.(1)求;(2)若,求實數(shù)的取值范圍;(3)若,求實數(shù)的取值范圍.19.已知函數(shù)(1)求函數(shù)的最小正周期和單調(diào)遞減區(qū)間;(2)求函數(shù),的值域20.在底面為平行四邊形的四棱錐中,,平面,且,點是的中點(Ⅰ)求證:;(Ⅱ)求證:平面;21.已知函數(shù)(1)若,求實數(shù)a值;(2)若函數(shù)f(x)有兩個零點,求實數(shù)a的取值范圍

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】由題意可知kAB==-2,所以m=-8.故選A2、B【解析】交集是兩個集合的公共元素,故.3、B【解析】由余弦函數(shù)的定義計算【詳解】由題意到原點的距離為,所以故選:B4、C【解析】根據(jù)復(fù)合函數(shù)的單調(diào)性法則“同增異減”求解即可.【詳解】由于函數(shù)在上單調(diào)遞減,在定義域內(nèi)是增函數(shù),所以根據(jù)復(fù)合函數(shù)的單調(diào)性法則“同增異減”得:在上單調(diào)遞減,且,所以且,解得:.故的取值范圍是故選:C.5、D【解析】由題意結(jié)合對數(shù)的運算法則確定的值即可.【詳解】由題意可得:,則本題選擇D選項.【點睛】本題主要考查指數(shù)對數(shù)互化,對數(shù)的運算法則等知識,意在考查學(xué)生的轉(zhuǎn)化能力和計算求解能力.6、A【解析】因為,的終邊(均不在軸上)關(guān)于軸對稱,則,,然后利用誘導(dǎo)公式對應(yīng)各個選項逐個判斷即可求解【詳解】因為,的終邊(均不在軸上)關(guān)于軸對稱,則,,選項,故正確,選項,故錯誤,選項,故錯誤,選項,故錯誤,故選:7、A【解析】由題意可得:本題選擇A選項.8、B【解析】,,則=,所以故選B.9、D【解析】要保證函數(shù)在R上單調(diào)遞減,需使得和都為減函數(shù),且x=1處函數(shù)值滿足,由此解得答案.【詳解】由函數(shù)在R上單調(diào)遞減,可得,解得,故選:D.10、B【解析】利用平均數(shù)和標(biāo)準(zhǔn)差的定義及意義即可求解.【詳解】對于A,因為一隊每場比賽平均失球數(shù)是1.5,二隊每場比賽平均失球數(shù)是2.1,所以平均說來一隊比二隊防守技術(shù)好,故A正確;對于B,因為二隊每場比賽平均失球數(shù)是2.1,全年比賽失球個數(shù)的標(biāo)準(zhǔn)差為0.4,所以二隊經(jīng)常失球,故B錯誤;對于C,因為一隊全年比賽失球個數(shù)的標(biāo)準(zhǔn)差為1.1,二隊全年比賽失球個數(shù)的標(biāo)準(zhǔn)差為0.4,所以一隊有時表現(xiàn)很差,有時表現(xiàn)又非常好,故C正確;對于D,因為一隊全年比賽失球個數(shù)的標(biāo)準(zhǔn)差為1.1,二隊全年比賽失球個數(shù)的標(biāo)準(zhǔn)差為0.4,所以二隊比一隊技術(shù)水平更穩(wěn)定,故D正確;故選:B.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】由偶函數(shù)的性質(zhì)可得,再由函數(shù)在上是減函數(shù),可得,從而可求出的取值范圍【詳解】因為函數(shù)是偶函數(shù),所以可化為,因為函數(shù)在上是減函數(shù),所以,所以或,解得或,所以的取值范圍是,故答案為:12、,【解析】利用特稱命題的否定可得出結(jié)論.【詳解】命題為特稱命題,該命題的否定為“,”.故答案為:,.13、【解析】分x小于等于0和x大于0兩種情況根據(jù)分段函數(shù)分別得到f(x)的解析式,把得到的f(x)的解析式分別代入不等式得到兩個一元二次不等式,分別求出各自的解集,求出兩解集的并集即可得到原不等式的解集【詳解】解:當(dāng)x≤0時,f(x)=x+2,代入不等式得:x+2≥x2,即(x-2)(x+1)≤0,解得-1≤x≤2,所以原不等式的解集為[-1,0];當(dāng)x>0時,f(x)=-x+2,代入不等式得:-x+2≥x2,即(x+2)(x-1)≤0,解得-2≤x≤1,所以原不等式的解集為[0,1],綜上原不等式的解集為[-1,1].故答案為[-1,1]【點睛】此題考查了不等式的解法,考查了轉(zhuǎn)化思想和分類討論的思想,是一道基礎(chǔ)題14、【解析】根據(jù)指對互化,指數(shù)冪的運算性質(zhì),以及指數(shù)函數(shù)的單調(diào)性即可解出【詳解】由得,即,解得故答案為:15、.【解析】由題意,要使函數(shù)有意義,則,解得:且.即函數(shù)定義域為.考點:函數(shù)的定義域.16、(答案不唯一)【解析】根據(jù)題意可知函數(shù)關(guān)于對稱,寫出一個關(guān)于對稱函數(shù),再檢驗滿足即可.【詳解】由,可知函數(shù)關(guān)于對稱,所以,又,滿足.所以函數(shù)的解析式為(答案不唯一).故答案為:(答案不唯一).三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)當(dāng)線段的長為5米時,花壇的面積最大.【解析】(1)根據(jù)扇形的面積公式,求出兩個扇形面積之差就是所求花壇的面積即可;(2)利用弧長公式根據(jù)預(yù)算費用總計1200元可得到等式,再求出花壇的面積的表達(dá)式,結(jié)合得到的等式,通過配方法可以求出面積最大時,線段AD的長度.【詳解】(1)設(shè)花壇面積為S平方米.答:花壇的面積為;(2)圓弧長為米,圓弧的長為米,線段的長為米由題意知,即*,,由*式知,,記則所以=當(dāng)時,取得最大值,即時,花壇的面積最大,答:當(dāng)線段的長為5米時,花壇的面積最大.【點睛】本題考查了弧長公式和扇形面積公式,考查了數(shù)學(xué)閱讀能力,考查了數(shù)學(xué)運算能力.18、(1);(2);(3).【解析】(1)因為全集,,所以(2)因為,且.所以實數(shù)的取值范圍是(3)因為,且,所以,所以可得19、(1),單調(diào)遞減區(qū)間(2)【解析】(1)先利用三角函數(shù)恒等變換公式對函數(shù)化簡變形得,從而可求出函數(shù)的周期,由可求出函數(shù)的減區(qū)間,(2)由,得,然后利用正弦函數(shù)的性質(zhì)可求出函數(shù)的值域【小問1詳解】∴令,,解得,函數(shù)的單調(diào)遞減區(qū)間為【小問2詳解】∵,∴故有,則的值域為20、(1)見解析;(2)見解析【解析】(Ⅰ)由已知得,,從而平面,由此能證明;(Ⅱ)連接與相交于,連接,由已知得,由此能證明平面試題解析:(Ⅰ)由平面可得AC,又,故AC平面PAB,所以.(Ⅱ)連BD交AC于點O,連EO,則EO是△PDB的中位線,所以EOPB又因為面,面,所以PB平面21、(1)(2)【解析】(1)根據(jù)即可求出實數(shù)a的值;(2)令,根據(jù)由求得的值

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論