四川省眉山市仁壽第一中學校南校區(qū)2026屆數(shù)學高二上期末監(jiān)測試題含解析_第1頁
四川省眉山市仁壽第一中學校南校區(qū)2026屆數(shù)學高二上期末監(jiān)測試題含解析_第2頁
四川省眉山市仁壽第一中學校南校區(qū)2026屆數(shù)學高二上期末監(jiān)測試題含解析_第3頁
四川省眉山市仁壽第一中學校南校區(qū)2026屆數(shù)學高二上期末監(jiān)測試題含解析_第4頁
四川省眉山市仁壽第一中學校南校區(qū)2026屆數(shù)學高二上期末監(jiān)測試題含解析_第5頁
已閱讀5頁,還剩8頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

四川省眉山市仁壽第一中學校南校區(qū)2026屆數(shù)學高二上期末監(jiān)測試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在數(shù)列中,,,則()A.985 B.1035C.2020 D.20702.已知點,點關(guān)于原點對稱點為,則()A. B.C. D.3.用1,2,3,4這4個數(shù)字可寫出()個沒有重復數(shù)字的三位數(shù)A.24 B.12C.81 D.644.已知1與5的等差中項是,又1,,,8成等比數(shù)列,公比為,則的值為()A.5 B.4C.3 D.65.等差數(shù)列x,,,…的第四項為()A.5 B.6C.7 D.86.為調(diào)查參加考試的高二級1200名學生的成績情況,從中抽查了100名學生的成績,就這個問題來說,下列說法正確的是()A.1200名學生是總體 B.每個學生是個體C.樣本容量是100 D.抽取的100名學生是樣本7.拋物線的準線方程是A. B.C. D.8.在單調(diào)遞減的等比數(shù)列中,若,,則()A.9 B.3C. D.9.函數(shù)在上的最大值是A. B.C. D.10.已知,則“”是“”的()A.充分不必要條件 B.充要條件C.必要不充分條件 D.既不充分也不必要條件11.在空間直角坐標系中,,,平面的一個法向量為,則平面與平面夾角的正弦值為()A. B.C. D.12.已知等差數(shù)列中,,則()A.15 B.30C.45 D.60二、填空題:本題共4小題,每小題5分,共20分。13.數(shù)列滿足,則__________.14.已知橢圓的右頂點為A,上頂點為B,且直線l與橢圓交于C,D兩點,若直線l直線AB,設直線AC,BD的斜率分別為,,則的值為___________.15.已知為等比數(shù)列的前n項和,若,,則_____________.16.如果橢圓上一點P到焦點的距離等于6,則點P到另一個焦點的距離為____三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)(1)敘述正弦定理;(2)在△中,應用正弦定理判斷“”是“”成立的什么條件,并加以證明.18.(12分)已知拋物線的焦點F,C上一點到焦點的距離為5(1)求C方程;(2)過F作直線l,交C于A,B兩點,若線段AB中點的縱坐標為-1,求直線l的方程19.(12分)已知函數(shù)f(x)=ax-2lnx(1)討論f(x)的單調(diào)性;(2)設函數(shù)g(x)=x-2,若存在,使得f(x)≤g(x),求a的取值范圍20.(12分)已知函數(shù)滿足.(1)求的解析式,并判斷其奇偶性;(2)若對任意,不等式恒成立,求實數(shù)a的取值范圍.21.(12分)設,分別是橢圓:的左、右焦點,的離心率為,點是上一點.(1)求橢圓的方程;(2)過點的直線交橢圓E于A,B兩點,且,求直線的方程.22.(10分)在平面直角坐標系中,已知點在橢圓上,其中為橢圓E的離心率(1)求b的值;(2)A,B分別為橢圓E的左右頂點,過點的直線l與橢圓E相交于M,N兩點,直線與交于點T,求證:

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】根據(jù)累加法得,,進而得.【詳解】解:因為所以,當時,,,……,,所以,將以上式子相加得,所以,,.當時,,滿足;所以,.所以.故選:A2、C【解析】根據(jù)空間兩點間距離公式,結(jié)合對稱性進行求解即可.【詳解】因為點關(guān)于原點的對稱點為,所以,因此,故選:C3、A【解析】由題意,從4個數(shù)中選出3個數(shù)出來全排列即可.【詳解】由題意,從4個數(shù)中選出3個數(shù)出來全排列,共可寫出個三位數(shù).故選:A4、A【解析】由等差中項的概念列式求得值,再由等比數(shù)列的通項公式列式求解,則答案可求.【詳解】由題意,,則;又1,,,8成等比數(shù)列,公比為,,即,,故選:.5、A【解析】根據(jù)等差數(shù)列的定義求出x,求出公差,即可求出第四項.【詳解】由題可知,等差數(shù)列公差d=(x+2)-x=2,故3x+6=x+2+2,故x=-1,故第四項為-1+(4-1)×2=5.故選:A.6、C【解析】根據(jù)總體、個體、樣本容量、樣本的定義,結(jié)合題意,即可判斷和選擇.【詳解】根據(jù)題意,總體是名學生的成績;個體是每個學生的成績;樣本容量是,樣本是抽取的100名學生的成績;故正確的是C.故選:C.7、C【解析】根據(jù)拋物線的概念,可得準線方程為8、A【解析】利用等比數(shù)列的通項公式可得,結(jié)合條件即求.【詳解】設等比數(shù)列的公比為,則由,,得,解得或,又單調(diào)遞減,故,.故選:A.9、D【解析】求出函數(shù)的導數(shù),解關(guān)于導函數(shù)的不等式,求出函數(shù)的單調(diào)區(qū)間即可,結(jié)合函數(shù)的單調(diào)性求出的最大值即可【詳解】函數(shù)的導數(shù)令可得,可得上單調(diào)遞增,在單調(diào)遞減,函數(shù)在上的最大值是故選D【點睛】本題考查了函數(shù)的單調(diào)性、最值問題,是一道中檔題10、B【解析】求得中的取值范圍,由此確定充分、必要條件.【詳解】,,所以“”是“”的充要條件.故選:B11、A【解析】根據(jù)給定條件求出平面的法向量,再借助空間向量夾角公式即可計算作答.【詳解】設平面的法向量為,則,令,得,令平面與平面夾角為,則,,所以平面與平面夾角的正弦值為.故選:A12、D【解析】根據(jù)等差數(shù)列的性質(zhì),可知,從而可求出結(jié)果.【詳解】解:根據(jù)題意,可知等差數(shù)列中,,則,所以.故選:D.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】對遞推關(guān)系多遞推一次,再相減,可得,再驗證是否滿足;【詳解】∵①時,②①-②得,時,滿足上式,.故答案為:.【點睛】數(shù)列中碰到遞推關(guān)系問題,經(jīng)常利用多遞推一次再相減的思想方法求解.14、##0.25【解析】求出點A,B坐標,設出直線l的方程,聯(lián)立直線l與橢圓方程,借助韋達定理即可計算作答.【詳解】依題意,點,直線AB斜率為,因直線l直線AB,則設直線l方程為:,,由消去y并整理得:,,解得,于是有或,設,則,有,因此,,所以的值為.故答案:15、30【解析】根據(jù)等比數(shù)列性質(zhì)得,,也成等比,即可求得結(jié)果.【詳解】由等比數(shù)列的性質(zhì)可知,,,構(gòu)成首項為10,公比為1的等比數(shù)列,所以【點睛】本題考查等比數(shù)列性質(zhì),考查基本求解能力,屬基礎題.16、14【解析】根據(jù)橢圓的定義及橢圓上一點P到焦點的距離等于6,可得的長.【詳解】解:根據(jù)橢圓的定義,又橢圓上一點P到焦點的距離等于6,,故,故答案:.【點睛】本題主要考查橢圓的定義及簡單性質(zhì),相對簡單.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)正弦定理見解析;(2)充要條件,證明見解析【解析】(1)用語言描述正弦定理,并用公式表達正弦定理(2)利用“大角對大邊”的性質(zhì),并根據(jù)正弦定理進行邊角互化即可【詳解】(1)正弦定理:在任意一個三角形中,各邊和它所對角的正弦值之比相等且等于這個三角形外接圓的直徑,即.(2)是充要條件.證明如下:充分性:又故有:必要性:又綜上,是的充要條件18、(1);(2).【解析】(1)由拋物線的定義,結(jié)合已知有求p,寫出拋物線方程.(2)由題意設直線l為,聯(lián)立拋物線方程,應用韋達定理可得,由中點公式有,進而求k值,寫出直線方程.【詳解】(1)由題意知:拋物線的準線為,則,可得,∴C的方程為.(2)由(1)知:,由題意知:直線l的斜率存在,令其方程為,∴聯(lián)立拋物線方程,得:,,若,則,而線段AB中點的縱坐標為-1,∴,即,得,∴直線l的方程為.【點睛】關(guān)鍵點點睛:(1)利用拋物線定義求參數(shù),寫出拋物線方程;(2)由直線與拋物線相交,以及相交弦的中點坐標值,應用韋達定理、中點公式求直線斜率,并寫出直線方程.19、(1)答案見解析;(2).【解析】(1)根據(jù)實數(shù)a的正負性,結(jié)合導數(shù)的性質(zhì)分類討論求解即可;(2)利用常變量分離法,通過構(gòu)造函數(shù),利用導數(shù)的性質(zhì)進行求解即可.【小問1詳解】當a≤0時,在(0,+∞)上恒成立;當a>0時,令得;令得;綜上:a≤0時f(x)在(0,+∞)上單調(diào)遞減;a>0時,f(x)在上單調(diào)遞減,在上單調(diào)遞增;【小問2詳解】由題意知ax-2lnx≤x-2在(0,+∞)上有解則ax≤x-2+2lnx,令,xg'(x)+0-g(x)↗極大值↘所以,因此有所以a的取值范圍為:【點睛】關(guān)鍵點睛:運用常變量分離法利用導數(shù)的性質(zhì)是解題的關(guān)鍵.20、(1),是奇函數(shù)(2)【解析】(1)由求出,進而求得的解析式,利用奇偶函數(shù)的定義判斷函數(shù)的奇偶性即可;(2)根據(jù)冪函數(shù)的單調(diào)性可得函數(shù)的單調(diào)性,求出函數(shù)的最小值,將不等式恒成立轉(zhuǎn)化為對任意使得恒成立即可.【小問1詳解】因為,所以,所以.所以.的定義城為,且,所以是奇函數(shù).【小問2詳解】因為,在上均為增函數(shù),所以在上增函數(shù),所以.對任意,不等式恒成立,則,所以,即實數(shù)a的取值范固為.21、(1)(2)或【解析】(1)按照所給的條件帶入橢圓方程以及e的定義即可;(2)聯(lián)立直線與橢圓方程,表達出,解方程即可.【小問1詳解】由題意知,,且,解得,,所以橢圓的方程為.【小問2詳解】由題意知,直線的斜率存在且不為0,故可設直線的方程為,設,.由得,則……①,……②,因為,所以,,由可得……③由①②③可得,解得,,所以直線的方程為或,故答案為:,或.22、(1)1(2)證明見解析【解析】(1)根據(jù)點在橢圓E上建立方程,結(jié)合,然后解出方程即可;(2)聯(lián)立直線與橢圓的方程,表示出直線與,求得交點的坐標,再分別表示出直線和的斜率并作差,通過韋達定理證明直線和的斜率相等即可.【小問1詳解】由點在橢圓E上,得:又,即解得:【小問2詳解】依題意,得,且直線l與x軸不會平行

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論