吉林省通化市外國語學(xué)校中考四模數(shù)學(xué)試題含解析_第1頁
吉林省通化市外國語學(xué)校中考四模數(shù)學(xué)試題含解析_第2頁
吉林省通化市外國語學(xué)校中考四模數(shù)學(xué)試題含解析_第3頁
吉林省通化市外國語學(xué)校中考四模數(shù)學(xué)試題含解析_第4頁
吉林省通化市外國語學(xué)校中考四模數(shù)學(xué)試題含解析_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2021-2022中考數(shù)學(xué)模擬試卷含解析注意事項(xiàng)1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1.益陽市高新區(qū)某廠今年新招聘一批員工,他們中不同文化程度的人數(shù)見下表:文化程度高中大專本科碩士博士人數(shù)9172095關(guān)于這組文化程度的人數(shù)數(shù)據(jù),以下說法正確的是:()A.眾數(shù)是20 B.中位數(shù)是17 C.平均數(shù)是12 D.方差是262.對于代數(shù)式ax2+bx+c(a≠0),下列說法正確的是()①如果存在兩個(gè)實(shí)數(shù)p≠q,使得ap2+bp+c=aq2+bq+c,則a+bx+c=a(x-p)(x-q)②存在三個(gè)實(shí)數(shù)m≠n≠s,使得am2+bm+c=an2+bn+c=as2+bs+c③如果ac<0,則一定存在兩個(gè)實(shí)數(shù)m<n,使am2+bm+c<0<an2+bn+c④如果ac>0,則一定存在兩個(gè)實(shí)數(shù)m<n,使am2+bm+c<0<an2+bn+cA.③ B.①③ C.②④ D.①③④3.如果代數(shù)式有意義,則實(shí)數(shù)x的取值范圍是()A.x≥﹣3 B.x≠0 C.x≥﹣3且x≠0 D.x≥34.一組數(shù)據(jù)1,2,3,3,4,1.若添加一個(gè)數(shù)據(jù)3,則下列統(tǒng)計(jì)量中,發(fā)生變化的是()A.平均數(shù) B.眾數(shù) C.中位數(shù) D.方差5.將拋物線向上平移3個(gè)單位,再向左平移2個(gè)單位,那么得到的拋物線的解析式為()A. B. C. D.6.如圖所示是8個(gè)完全相同的小正方體組成的幾何體,則該幾何體的左視圖是()A. B.C. D.7.如圖,在矩形ABCD中,AB=5,BC=7,點(diǎn)E為BC上一動點(diǎn),把△ABE沿AE折疊,當(dāng)點(diǎn)B的對應(yīng)點(diǎn)B′落在∠ADC的角平分線上時(shí),則點(diǎn)B′到BC的距離為()A.1或2 B.2或3 C.3或4 D.4或58.剪紙是我國傳統(tǒng)的民間藝術(shù).下列剪紙作品既不是中心對稱圖形,也不是軸對稱圖形的是()A. B. C. D.9.如圖,中,,且,設(shè)直線截此三角形所得陰影部分的面積為S,則S與t之間的函數(shù)關(guān)系的圖象為下列選項(xiàng)中的A. B. C. D.10.將函數(shù)的圖象用下列方法平移后,所得的圖象不經(jīng)過點(diǎn)A(1,4)的方法是()A.向左平移1個(gè)單位 B.向右平移3個(gè)單位C.向上平移3個(gè)單位 D.向下平移1個(gè)單位11.tan60°的值是()A. B. C. D.12.二次函數(shù)的圖像如圖所示,下列結(jié)論正確是()A. B. C. D.有兩個(gè)不相等的實(shí)數(shù)根二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13.如圖,矩形ABCD中,AB=4,BC=8,P,Q分別是直線BC,AB上的兩個(gè)動點(diǎn),AE=2,△AEQ沿EQ翻折形成△FEQ,連接PF,PD,則PF+PD的最小值是____.14.如圖,在平面直角坐標(biāo)系xOy中,點(diǎn)A,點(diǎn)B的坐標(biāo)分別為(0,2),(-1,0),將線段AB沿x軸的正方向平移,若點(diǎn)B的對應(yīng)點(diǎn)的坐標(biāo)為B'(2,0),則點(diǎn)A的對應(yīng)點(diǎn)A'的坐標(biāo)為___.15.分解因式:=_______.16.已知梯形ABCD,AD∥BC,BC=2AD,如果AB=a,AC=b,那么DA=_____(用17.化簡:=_____.18.若關(guān)于的一元二次方程有兩個(gè)不相等的實(shí)數(shù)根,則的取值范圍為__________.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)如圖,已知拋物線y=ax2+bx+5經(jīng)過A(﹣5,0),B(﹣4,﹣3)兩點(diǎn),與x軸的另一個(gè)交點(diǎn)為C,頂點(diǎn)為D,連結(jié)CD.求該拋物線的表達(dá)式;點(diǎn)P為該拋物線上一動點(diǎn)(與點(diǎn)B、C不重合),設(shè)點(diǎn)P的橫坐標(biāo)為t.①當(dāng)點(diǎn)P在直線BC的下方運(yùn)動時(shí),求△PBC的面積的最大值;②該拋物線上是否存在點(diǎn)P,使得∠PBC=∠BCD?若存在,求出所有點(diǎn)P的坐標(biāo);若不存在,請說明理由.20.(6分)在□ABCD,過點(diǎn)D作DE⊥AB于點(diǎn)E,點(diǎn)F在邊CD上,DF=BE,連接AF,BF.求證:四邊形BFDE是矩形;若CF=3,BF=4,DF=5,求證:AF平分∠DAB.21.(6分)為了豐富校園文化,促進(jìn)學(xué)生全面發(fā)展.我市某區(qū)教育局在全區(qū)中小學(xué)開展“書法、武術(shù)、黃梅戲進(jìn)校園”活動.今年3月份,該區(qū)某校舉行了“黃梅戲”演唱比賽,比賽成績評定為A,B,C,D,E五個(gè)等級,該校部分學(xué)生參加了學(xué)校的比賽,并將比賽結(jié)果繪制成如下兩幅不完整的統(tǒng)計(jì)圖,請根據(jù)圖中信息,解答下列問題.(1)求該校參加本次“黃梅戲”演唱比賽的學(xué)生人數(shù);(2)求扇形統(tǒng)計(jì)圖B等級所對應(yīng)扇形的圓心角度數(shù);(3)已知A等級的4名學(xué)生中有1名男生,3名女生,現(xiàn)從中任意選取2名學(xué)生作為全校訓(xùn)練的示范者,請你用列表法或畫樹狀圖的方法,求出恰好選1名男生和1名女生的概率.22.(8分)如圖,直線y=﹣x+2與反比例函數(shù)(k≠0)的圖象交于A(a,3),B(3,b)兩點(diǎn),過點(diǎn)A作AC⊥x軸于點(diǎn)C,過點(diǎn)B作BD⊥x軸于點(diǎn)D.求a,b的值及反比例函數(shù)的解析式;若點(diǎn)P在直線y=﹣x+2上,且S△ACP=S△BDP,請求出此時(shí)點(diǎn)P的坐標(biāo);在x軸正半軸上是否存在點(diǎn)M,使得△MAB為等腰三角形?若存在,請直接寫出M點(diǎn)的坐標(biāo);若不存在,說明理由.23.(8分)計(jì)算:2﹣1+|﹣|++2cos30°24.(10分)為了預(yù)防“甲型H1N1”,某學(xué)校對教室采用藥薰消毒法進(jìn)行消毒,已知藥物燃燒時(shí),室內(nèi)每立方米空氣中的含藥量y(mg)與時(shí)間x(min)成正比例,藥物燃燒后,y與x成反比例,如圖所示,現(xiàn)測得藥物8min燃畢,此時(shí)室內(nèi)空氣每立方米的含藥量為6mg,請你根據(jù)題中提供的信息,解答下列問題:藥物燃燒時(shí),求y關(guān)于x的函數(shù)關(guān)系式?自變量x的取值范圍是什么?藥物燃燒后y與x的函數(shù)關(guān)系式呢?研究表明,當(dāng)空氣中每立方米的含藥量低于1.6mg時(shí),學(xué)生方可進(jìn)教室,那么從消毒開始,至少需要幾分鐘后,學(xué)生才能進(jìn)入教室?研究表明,當(dāng)空氣中每立方米的含藥量不低于3mg且持續(xù)時(shí)間不低于10min時(shí),才能殺滅空氣中的毒,那么這次消毒是否有效?為什么?25.(10分)如圖,某人在山坡坡腳A處測得電視塔尖點(diǎn)C的仰角為60°,沿山坡向上走到P處再測得點(diǎn)C的仰角為45°,已知OA=100米,山坡坡度(豎直高度與水平寬度的比)i=1:2,且O、A、B在同一條直線上.求電視塔OC的高度以及此人所在位置點(diǎn)P的鉛直高度.(測傾器高度忽略不計(jì),結(jié)果保留根號形式)26.(12分)解方程組27.(12分)先化簡,,其中x=.

參考答案一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、C【解析】

根據(jù)眾數(shù)、中位數(shù)、平均數(shù)以及方差的概念求解.【詳解】A、這組數(shù)據(jù)中9出現(xiàn)的次數(shù)最多,眾數(shù)為9,故本選項(xiàng)錯誤;B、因?yàn)楣灿?組,所以第3組的人數(shù)為中位數(shù),即9是中位數(shù),故本選項(xiàng)錯誤;C、平均數(shù)==12,故本選項(xiàng)正確;D、方差=[(9-12)2+(17-12)2+(20-12)2+(9-12)2+(5-12)2]=,故本選項(xiàng)錯誤.故選C.【點(diǎn)睛】本題考查了中位數(shù)、平均數(shù)、眾數(shù)的知識,解答本題的關(guān)鍵是掌握各知識點(diǎn)的概念.2、A【解析】設(shè)(1)如果存在兩個(gè)實(shí)數(shù)p≠q,使得ap2+bp+c=aq2+bq+c,則說明在中,當(dāng)x=p和x=q時(shí)的y值相等,但并不能說明此時(shí)p、q是與x軸交點(diǎn)的橫坐標(biāo),故①中結(jié)論不一定成立;(2)若am2+bm+c=an2+bn+c=as2+bs+c,則說明在中當(dāng)x=m、n、s時(shí),對應(yīng)的y值相等,因此m、n、s中至少有兩個(gè)數(shù)是相等的,故②錯誤;(3)如果ac<0,則b2-4ac>0,則的圖象和x軸必有兩個(gè)不同的交點(diǎn),所以此時(shí)一定存在兩個(gè)實(shí)數(shù)m<n,使am2+bm+c<0<an2+bn+c,故③在結(jié)論正確;(4)如果ac>0,則b2-4ac的值的正負(fù)無法確定,此時(shí)的圖象與x軸的交點(diǎn)情況無法確定,所以④中結(jié)論不一定成立.綜上所述,四種說法中正確的是③.故選A.3、C【解析】

根據(jù)二次根式有意義和分式有意義的條件列出不等式,解不等式即可.【詳解】由題意得,x+3≥0,x≠0,解得x≥?3且x≠0,故選C.【點(diǎn)睛】本題考查分式有意義條件,二次根式有意義的條件,熟練掌握相關(guān)知識是解題的關(guān)鍵.4、D【解析】A.∵原平均數(shù)是:(1+2+3+3+4+1)÷6=3;添加一個(gè)數(shù)據(jù)3后的平均數(shù)是:(1+2+3+3+4+1+3)÷7=3;∴平均數(shù)不發(fā)生變化.B.∵原眾數(shù)是:3;添加一個(gè)數(shù)據(jù)3后的眾數(shù)是:3;∴眾數(shù)不發(fā)生變化;C.∵原中位數(shù)是:3;添加一個(gè)數(shù)據(jù)3后的中位數(shù)是:3;∴中位數(shù)不發(fā)生變化;D.∵原方差是:;添加一個(gè)數(shù)據(jù)3后的方差是:;∴方差發(fā)生了變化.故選D.點(diǎn)睛:本題主要考查的是眾數(shù)、中位數(shù)、方差、平均數(shù)的,熟練掌握相關(guān)概念和公式是解題的關(guān)鍵.5、A【解析】

直接根據(jù)“上加下減,左加右減”的原則進(jìn)行解答即可.【詳解】將拋物線向上平移3個(gè)單位,再向左平移2個(gè)單位,根據(jù)拋物線的平移規(guī)律可得新拋物線的解析式為,故答案選A.6、A【解析】分析:根據(jù)主視圖、左視圖、俯視圖是分別從物體正面、側(cè)面和上面看所得到的圖形,從而得出該幾何體的左視圖.詳解:該幾何體的左視圖是:故選A.點(diǎn)睛:本題考查了學(xué)生的思考能力和對幾何體三種視圖的空間想象能力.7、A【解析】

連接B′D,過點(diǎn)B′作B′M⊥AD于M.設(shè)DM=B′M=x,則AM=7-x,根據(jù)等腰直角三角形的性質(zhì)和折疊的性質(zhì)得到:(7-x)2=25-x2,通過解方程求得x的值,易得點(diǎn)B′到BC的距離.【詳解】解:如圖,連接B′D,過點(diǎn)B′作B′M⊥AD于M,∵點(diǎn)B的對應(yīng)點(diǎn)B′落在∠ADC的角平分線上,∴設(shè)DM=B′M=x,則AM=7﹣x,又由折疊的性質(zhì)知AB=AB′=5,∴在直角△AMB′中,由勾股定理得到:,即,解得x=3或x=4,則點(diǎn)B′到BC的距離為2或1.故選A.【點(diǎn)睛】本題考查的是翻折變換的性質(zhì),掌握翻折變換是一種對稱變換,它屬于軸對稱,折疊前后圖形的形狀和大小不變,位置變化,對應(yīng)邊和對應(yīng)角相等是解題的關(guān)鍵.8、A【解析】試題分析:根據(jù)軸對稱圖形和中心對稱圖形的概念可知:選項(xiàng)A既不是中心對稱圖形,也不是軸對稱圖形,故本選項(xiàng)正確;選項(xiàng)B不是中心對稱圖形,是軸對稱圖形,故本選項(xiàng)錯誤;選項(xiàng)C既是中心對稱圖形,也是軸對稱圖形,故本選項(xiàng)錯誤;選項(xiàng)D既是中心對稱圖形,也是軸對稱圖形,故本選項(xiàng)錯誤.故選A.考點(diǎn):中心對稱圖形;軸對稱圖形.9、D【解析】

Rt△AOB中,AB⊥OB,且AB=OB=3,所以很容易求得∠AOB=∠A=45°;再由平行線的性質(zhì)得出∠OCD=∠A,即∠AOD=∠OCD=45°,進(jìn)而證明OD=CD=t;最后根據(jù)三角形的面積公式,解答出S與t之間的函數(shù)關(guān)系式,由函數(shù)解析式來選擇圖象.【詳解】解:∵Rt△AOB中,AB⊥OB,且AB=OB=3,∴∠AOB=∠A=45°,∵CD⊥OB,∴CD∥AB,∴∠OCD=∠A,∴∠AOD=∠OCD=45°,∴OD=CD=t,∴S△OCD=×OD×CD=t2(0≤t≤3),即S=t2(0≤t≤3).故S與t之間的函數(shù)關(guān)系的圖象應(yīng)為定義域?yàn)閇0,3],開口向上的二次函數(shù)圖象;故選D.【點(diǎn)睛】本題主要考查的是二次函數(shù)解析式的求法及二次函數(shù)的圖象特征,解答本題的關(guān)鍵是根據(jù)三角形的面積公式,解答出S與t之間的函數(shù)關(guān)系式,由函數(shù)解析式來選擇圖象.10、D【解析】A.平移后,得y=(x+1)2,圖象經(jīng)過A點(diǎn),故A不符合題意;B.平移后,得y=(x?3)2,圖象經(jīng)過A點(diǎn),故B不符合題意;C.平移后,得y=x2+3,圖象經(jīng)過A點(diǎn),故C不符合題意;D.平移后,得y=x2?1圖象不經(jīng)過A點(diǎn),故D符合題意;故選D.11、A【解析】

根據(jù)特殊角三角函數(shù)值,可得答案.【詳解】tan60°=故選:A.【點(diǎn)睛】本題考查了特殊角三角函數(shù)值,熟記特殊角三角函數(shù)值是解題關(guān)鍵.12、C【解析】【分析】觀察圖象:開口向下得到a<0;對稱軸在y軸的右側(cè)得到a、b異號,則b>0;拋物線與y軸的交點(diǎn)在x軸的上方得到c>0,所以abc<0;由對稱軸為x==1,可得2a+b=0;當(dāng)x=-1時(shí)圖象在x軸下方得到y(tǒng)=a-b+c<0,結(jié)合b=-2a可得3a+c<0;觀察圖象可知拋物線的頂點(diǎn)為(1,3),可得方程有兩個(gè)相等的實(shí)數(shù)根,據(jù)此對各選項(xiàng)進(jìn)行判斷即可.【詳解】觀察圖象:開口向下得到a<0;對稱軸在y軸的右側(cè)得到a、b異號,則b>0;拋物線與y軸的交點(diǎn)在x軸的上方得到c>0,所以abc<0,故A選項(xiàng)錯誤;∵對稱軸x==1,∴b=-2a,即2a+b=0,故B選項(xiàng)錯誤;當(dāng)x=-1時(shí),y=a-b+c<0,又∵b=-2a,∴3a+c<0,故C選項(xiàng)正確;∵拋物線的頂點(diǎn)為(1,3),∴的解為x1=x2=1,即方程有兩個(gè)相等的實(shí)數(shù)根,故D選項(xiàng)錯誤,故選C.【點(diǎn)睛】本題考查了二次函數(shù)圖象與系數(shù)的關(guān)系:對于二次函數(shù)y=ax2+bx+c(a≠0)的圖象,當(dāng)a>0,開口向上,函數(shù)有最小值,a<0,開口向下,函數(shù)有最大值;對稱軸為直線x=,a與b同號,對稱軸在y軸的左側(cè),a與b異號,對稱軸在y軸的右側(cè);當(dāng)c>0,拋物線與y軸的交點(diǎn)在x軸的上方;當(dāng)△=b2-4ac>0,拋物線與x軸有兩個(gè)交點(diǎn).二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13、1【解析】

如圖作點(diǎn)D關(guān)于BC的對稱點(diǎn)D′,連接PD′,ED′,由DP=PD′,推出PD+PF=PD′+PF,又EF=EA=2是定值,即可推出當(dāng)E、F、P、D′共線時(shí),PF+PD′定值最小,最小值=ED′﹣EF.【詳解】如圖作點(diǎn)D關(guān)于BC的對稱點(diǎn)D′,連接PD′,ED′,在Rt△EDD′中,∵DE=6,DD′=1,∴ED′==10,∵DP=PD′,∴PD+PF=PD′+PF,∵EF=EA=2是定值,∴當(dāng)E、F、P、D′共線時(shí),PF+PD′定值最小,最小值=10﹣2=1,∴PF+PD的最小值為1,故答案為1.【點(diǎn)睛】本題考查翻折變換、矩形的性質(zhì)、勾股定理等知識,解題的關(guān)鍵是學(xué)會利用軸對稱,根據(jù)兩點(diǎn)之間線段最短解決最短問題.14、(3,2)【解析】

根據(jù)平移的性質(zhì)即可得到結(jié)論.【詳解】∵將線段AB沿x軸的正方向平移,若點(diǎn)B的對應(yīng)點(diǎn)B′的坐標(biāo)為(2,0),∵-1+3=2,∴0+3=3∴A′(3,2),故答案為:(3,2)【點(diǎn)睛】本題考查了坐標(biāo)與圖形變化-平移.解決本題的關(guān)鍵是正確理解題目,按題目的敘述一定要把各點(diǎn)的大致位置確定,正確地作出圖形.15、.【解析】

將一個(gè)多項(xiàng)式分解因式的一般步驟是首先看各項(xiàng)有沒有公因式,若有公因式,則把它提取出來,之后再觀察是否是完全平方式或平方差式,若是就考慮用公式法繼續(xù)分解因式.【詳解】直接提取公因式即可:.16、1【解析】

根據(jù)向量的三角形法則表示出CB,再根據(jù)BC、AD的關(guān)系解答.【詳解】如圖,∵AB=a,∴CB=AB-AC=a-b,∵AD∥BC,BC=2AD,∴DA=12CB=12(a-b)=1故答案為12a-【點(diǎn)睛】本題考查了平面向量,梯形,向量的問題,熟練掌握三角形法則和平行四邊形法則是解題的關(guān)鍵.17、【解析】

直接利用二次根式的性質(zhì)化簡求出答案.【詳解】,故答案為.【點(diǎn)睛】本題考查了二次根式的性質(zhì)與化簡,正確掌握二次根式的性質(zhì)是解題的關(guān)鍵.18、.【解析】

根據(jù)判別式的意義得到,然后解不等式即可.【詳解】解:關(guān)于的一元二次方程有兩個(gè)不相等的實(shí)數(shù)根,,解得:,故答案為:.【點(diǎn)睛】此題考查了一元二次方程的根的判別式:當(dāng),方程有兩個(gè)不相等的實(shí)數(shù)根;當(dāng),方程有兩個(gè)相等的實(shí)數(shù)根;當(dāng),方程沒有實(shí)數(shù)根.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)y=x2+6x+5;(2)①S△PBC的最大值為;②存在,點(diǎn)P的坐標(biāo)為P(﹣,﹣)或(0,5).【解析】

(1)將點(diǎn)A、B坐標(biāo)代入二次函數(shù)表達(dá)式,即可求出二次函數(shù)解析式;(2)①如圖1,過點(diǎn)P作y軸的平行線交BC于點(diǎn)G,將點(diǎn)B、C的坐標(biāo)代入一次函數(shù)表達(dá)式并解得:直線BC的表達(dá)式為:y=x+1,設(shè)點(diǎn)G(t,t+1),則點(diǎn)P(t,t2+6t+5),利用三角形面積公式求出最大值即可;②設(shè)直線BP與CD交于點(diǎn)H,當(dāng)點(diǎn)P在直線BC下方時(shí),求出線段BC的中點(diǎn)坐標(biāo)為(﹣,﹣),過該點(diǎn)與BC垂直的直線的k值為﹣1,求出直線BC中垂線的表達(dá)式為:y=﹣x﹣4…③,同理直線CD的表達(dá)式為:y=2x+2…④,、聯(lián)立③④并解得:x=﹣2,即點(diǎn)H(﹣2,﹣2),同理可得直線BH的表達(dá)式為:y=x﹣1…⑤,聯(lián)立⑤和y=x2+6x+5并解得:x=﹣,即可求出P點(diǎn);當(dāng)點(diǎn)P(P′)在直線BC上方時(shí),根據(jù)∠PBC=∠BCD求出BP′∥CD,求出直線BP′的表達(dá)式為:y=2x+5,聯(lián)立y=x2+6x+5和y=2x+5,求出x,即可求出P.【詳解】解:(1)將點(diǎn)A、B坐標(biāo)代入二次函數(shù)表達(dá)式得:,解得:,故拋物線的表達(dá)式為:y=x2+6x+5…①,令y=0,則x=﹣1或﹣5,即點(diǎn)C(﹣1,0);(2)①如圖1,過點(diǎn)P作y軸的平行線交BC于點(diǎn)G,將點(diǎn)B、C的坐標(biāo)代入一次函數(shù)表達(dá)式并解得:直線BC的表達(dá)式為:y=x+1…②,設(shè)點(diǎn)G(t,t+1),則點(diǎn)P(t,t2+6t+5),S△PBC=PG(xC﹣xB)=(t+1﹣t2﹣6t﹣5)=﹣t2﹣t﹣6,∵-<0,∴S△PBC有最大值,當(dāng)t=﹣時(shí),其最大值為;②設(shè)直線BP與CD交于點(diǎn)H,當(dāng)點(diǎn)P在直線BC下方時(shí),∵∠PBC=∠BCD,∴點(diǎn)H在BC的中垂線上,線段BC的中點(diǎn)坐標(biāo)為(﹣,﹣),過該點(diǎn)與BC垂直的直線的k值為﹣1,設(shè)BC中垂線的表達(dá)式為:y=﹣x+m,將點(diǎn)(﹣,﹣)代入上式并解得:直線BC中垂線的表達(dá)式為:y=﹣x﹣4…③,同理直線CD的表達(dá)式為:y=2x+2…④,聯(lián)立③④并解得:x=﹣2,即點(diǎn)H(﹣2,﹣2),同理可得直線BH的表達(dá)式為:y=x﹣1…⑤,聯(lián)立①⑤并解得:x=﹣或﹣4(舍去﹣4),故點(diǎn)P(﹣,﹣);當(dāng)點(diǎn)P(P′)在直線BC上方時(shí),∵∠PBC=∠BCD,∴BP′∥CD,則直線BP′的表達(dá)式為:y=2x+s,將點(diǎn)B坐標(biāo)代入上式并解得:s=5,即直線BP′的表達(dá)式為:y=2x+5…⑥,聯(lián)立①⑥并解得:x=0或﹣4(舍去﹣4),故點(diǎn)P(0,5);故點(diǎn)P的坐標(biāo)為P(﹣,﹣)或(0,5).【點(diǎn)睛】本題考查的是二次函數(shù),熟練掌握拋物線的性質(zhì)是解題的關(guān)鍵.20、(1)見解析(2)見解析【解析】試題分析:(1)根據(jù)平行四邊形的性質(zhì),可得AB與CD的關(guān)系,根據(jù)平行四邊形的判定,可得BFDE是平行四邊形,再根據(jù)矩形的判定,可得答案;(2)根據(jù)平行線的性質(zhì),可得∠DFA=∠FAB,根據(jù)等腰三角形的判定與性質(zhì),可得∠DAF=∠DFA,根據(jù)角平分線的判定,可得答案.試題分析:(1)證明:∵四邊形ABCD是平行四邊形,∴AB∥CD.∵BE∥DF,BE=DF,∴四邊形BFDE是平行四邊形.∵DE⊥AB,∴∠DEB=90°,∴四邊形BFDE是矩形;(2)∵四邊形ABCD是平行四邊形,∴AB∥DC,∴∠DFA=∠FAB.在Rt△BCF中,由勾股定理,得BC===5,∴AD=BC=DF=5,∴∠DAF=∠DFA,∴∠DAF=∠FAB,即AF平分∠DAB.【點(diǎn)睛】本題考查了平行四邊形的性質(zhì),利用了平行四邊形的性質(zhì),矩形的判定,等腰三角形的判定與性質(zhì),利用等腰三角形的判定與性質(zhì)得出∠DAF=∠DFA是解題關(guān)鍵.21、(1)50;(2)115.2°;(3)12【解析】(1)先求出參加本次比賽的學(xué)生人數(shù);(2)由(1)求出的學(xué)生人數(shù),即可求出B等級所對應(yīng)扇形的圓心角度數(shù);(3)首先根據(jù)題意列表或畫出樹狀圖,然后由求得所有等可能的結(jié)果,再利用概率公式即可求得答案.解:(1)參加本次比賽的學(xué)生有:4÷8%=50(人)(2)B等級的學(xué)生共有:50-4-20-8-2=16(人).∴所占的百分比為:16÷50=32%∴B等級所對應(yīng)扇形的圓心角度數(shù)為:360°×32%=115.2°.(3)列表如下:男女1女2女3男﹣﹣﹣(女,男)(女,男)(女,男)女1(男,女)﹣﹣﹣(女,女)(女,女)女2(男,女)(女,女)﹣﹣﹣(女,女)女3(男,女)(女,女)(女,女)﹣﹣﹣∵共有12種等可能的結(jié)果,選中1名男生和1名女生結(jié)果的有6種.∴P(選中1名男生和1名女生)=6“點(diǎn)睛”本題考查了列表法與樹狀圖法:通過列表法或樹狀圖法展示所有等可能的結(jié)果求出n,再從中選出符合事件A或B的結(jié)果數(shù)目m,然后根據(jù)概率公式求出事件A或B的概率.通過扇形統(tǒng)計(jì)圖求出扇形的圓心角度數(shù),應(yīng)用數(shù)形結(jié)合的思想是解決此類題目的關(guān)鍵.22、(1)y=;(2)P(0,2)或(-3,5);(3)M(,0)或(,0).【解析】

(1)利用點(diǎn)在直線上,將點(diǎn)的坐標(biāo)代入直線解析式中求解即可求出a,b,最后用待定系數(shù)法求出反比例函數(shù)解析式;(2)設(shè)出點(diǎn)P坐標(biāo),用三角形的面積公式求出S△ACP=×3×|n+1|,S△BDP=×1×|3?n|,進(jìn)而建立方程求解即可得出結(jié)論;(3)設(shè)出點(diǎn)M坐標(biāo),表示出MA2=(m+1)2+9,MB2=(m?3)2+1,AB2=32,再三種情況建立方程求解即可得出結(jié)論.【詳解】(1)∵直線y=-x+2與反比例函數(shù)y=(k≠0)的圖象交于A(a,3),B(3,b)兩點(diǎn),∴-a+2=3,-3+2=b,∴a=-1,b=-1,∴A(-1,3),B(3,-1),∵點(diǎn)A(-1,3)在反比例函數(shù)y=上,∴k=-1×3=-3,∴反比例函數(shù)解析式為y=;(2)設(shè)點(diǎn)P(n,-n+2),∵A(-1,3),∴C(-1,0),∵B(3,-1),∴D(3,0),∴S△ACP=AC×|xP?xA|=×3×|n+1|,S△BDP=BD×|xB?xP|=×1×|3?n|,∵S△ACP=S△BDP,∴×3×|n+1|=×1×|3?n|,∴n=0或n=?3,∴P(0,2)或(?3,5);(3)設(shè)M(m,0)(m>0),∵A(?1,3),B(3,?1),∴MA2=(m+1)2+9,MB2=(m?3)2+1,AB2=(3+1)2+(?1?3)2=32,∵△MAB是等腰三角形,∴①當(dāng)MA=MB時(shí),∴(m+1)2+9=(m?3)2+1,∴m=0,(舍)②當(dāng)MA=AB時(shí),∴(m+1)2+9=32,∴m=?1+或m=?1?(舍),∴M(?1+,0)③當(dāng)MB=AB時(shí),(m?3)2+1=32,∴m=3+或m=3?(舍),∴M(3+,0)即:滿足條件的M(?1+,0)或(3+,0).【點(diǎn)睛】此題是反比例函數(shù)綜合題,主要考查了待定系數(shù)法,三角形的面積的求法,等腰三角形的性質(zhì),用方程的思想解決問題是解本題的關(guān)鍵.23、+4.【解析】

原式利用負(fù)整數(shù)指數(shù)冪法則,二次根式性質(zhì),以及特殊角的三角函數(shù)值計(jì)算即可求出值.【詳解】原式=++2+2×=+4.【點(diǎn)睛】本題考查了實(shí)數(shù)的運(yùn)算,涉

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論