版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
安徽省安師大附中2026屆高二上數(shù)學期末學業(yè)水平測試試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.某學校高一、高二、高三年級的學生人數(shù)之比為3∶3∶4,現(xiàn)用分層抽樣的方法從該校高中學生中抽取容量為50的樣本,則應從高三年級抽取的學生數(shù)為()A.10 B.15C.20 D.302.若拋物線y2=4x上一點P到x軸的距離為2,則點P到拋物線的焦點F的距離為()A.4 B.5C.6 D.73.已知等比數(shù)列滿足,,則()A. B.C. D.4.若直線與曲線只有一個公共點,則m的取值范圍是()A. B.C.或 D.或5.如果,那么下列不等式成立的是()A. B.C. D.6.雙曲線與橢圓的焦點相同,則等于()A.1 B.C.1或 D.27.命題“,”的否定是()A., B.,C, D.,8.已知命題p:?x>2,x2>2x,命題q:?x0∈R,ln(x02+1)<0,則下列命題是真命題的是()A.p∧ B.p∨C.p∧q D.p∨q9.如圖,在直三棱柱中,,,E是的中點,則直線BC與平面所成角的正弦值為()A. B.C. D.10.已知點在拋物線:上,點為拋物線的焦點,,點P到y(tǒng)軸的距離為4,則拋物線C的方程為()A. B.C. D.11.設是公比為的等比數(shù)列,則“”是“為遞增數(shù)列”的A.充分而不必要條件 B.必要而不充分條件C.充分必要條件 D.既不充分也不必要條件12.設函數(shù),若的整數(shù)有且僅有兩個,則的取值范圍是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖,莖葉圖所示數(shù)據(jù)平均分為91,則數(shù)字x應該是__________14.已知為橢圓C:的兩個焦點,P,Q為C上關(guān)于坐標原點對稱的兩點,且,則四邊形的面積為________15.數(shù)列的前n項和滿足:,則________16.有一道樓梯共10階,小王同學要登上這道樓梯,登樓梯時每步隨機選擇一步一階或一步兩階,小王同學7步登完樓梯的概率為___________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)設點P是曲線上的任意一點,k是該曲線在點P處的切線的斜率(1)求k的取值范圍;(2)求當k取最大值時,該曲線在點P處的切線方程18.(12分)在中,是的中點,,現(xiàn)將該平行四邊形沿對角線折成直二面角,如圖:(1)求證:;(2)求二面角的余弦值.19.(12分)設橢圓:()的離心率為,橢圓上一點到左右兩個焦點、的距離之和是4.(1)求橢圓的方程;(2)已知過的直線與橢圓交于、兩點,且兩點與左右頂點不重合,若,求四邊形面積的最大值.20.(12分)如圖,在四棱錐P-ABCD中,底面ABCD是平行四邊形,側(cè)棱底面ABCD,,,E為PB中點,F(xiàn)為PC上一點,且(1)求證:;(2)求平面DEF與平面ABCD所成銳二面角的余弦值21.(12分)已知函數(shù)(1)若在點處的切線與軸平行,求的值;(2)當時,求證:;(3)若函數(shù)有兩個零點,求的取值范圍22.(10分)已知函數(shù)的圖象在點處的切線與直線平行(是自然對數(shù)的底數(shù)).(1)求的值;(2)若在上恒成立,求實數(shù)的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】根據(jù)抽取比例乘以即可求解.【詳解】由題意可得應從高三年級抽取的學生數(shù)為,故選:C.2、A【解析】根據(jù)拋物線y2=4x上一點P到x軸的距離為2,得到點P(3,±2),然后利用拋物線的定義求解.【詳解】由題意,知拋物線y2=4x的準線方程為x=-1,∵拋物線y2=4x上一點P到x軸的距離為2,則P(3,±2),∴點P到拋物線的準線的距離為3+1=4,∴點P到拋物線的焦點F的距離為4.故選:A.3、D【解析】由已知條件求出公比的平方,然后利用即可求解.【詳解】解:設等比數(shù)列的公比為,因為等比數(shù)列滿足,,所以,所以,故選:D.4、D【解析】根據(jù)曲線方程的特征,發(fā)現(xiàn)曲線表示在軸上方的圖象,畫出圖形,根據(jù)圖形上直線的三個特殊位置,當已知直線位于直線位置時,把已知直線的解析式代入橢圓方程中,消去得到關(guān)于的一元二次方程,由題意可知根的判別式等于0即可求出此時對應的的值;當已知直線位于直線及直線的位置時,分別求出對應的的值,寫出滿足題意得的范圍,綜上,得到所有滿足題意得的取值范圍【詳解】根據(jù)曲線,得到,解得:;,畫出曲線的圖象,為橢圓在軸上邊的一部分,如圖所示:當直線在直線的位置時,直線與橢圓相切,故只有一個交點,把直線代入橢圓方程得:,得到,即,化簡得:,解得或(舍去),則時,直線與曲線只有一個公共點;當直線在直線位置時,直線與曲線剛好有兩個交點,此時,當直線在直線位置時,直線與曲線只有一個公共點,此時,則當時,直線與曲線只有一個公共點,綜上,滿足題意得的范圍是或故選:D5、D【解析】利用不等式的性質(zhì)分析判斷每個選項.【詳解】由不等式的性質(zhì)可知,因為,所以,,故A錯誤,D正確;由,可得,,故B,C錯誤.故選:D6、A【解析】根據(jù)雙曲線方程形式確定焦點位置,再根據(jù)半焦距關(guān)系列式求參數(shù).【詳解】因為雙曲線的焦點在軸上,所以橢圓焦點在軸上,依題意得解得.故選:A7、D【解析】由含量詞命題否定的定義,寫出命題的否定即可【詳解】命題“,”的否定是:,,故選:D.8、B【解析】取x=4,得出命題p是假命題,由對數(shù)的運算得出命題q是假命題,再判斷選項.【詳解】命題p:?x>2,x2>2x,是假命題,例如取x=4,則42=24;命題q:?x0∈R,ln(x02+1)<0,是假命題,∵?x∈R,ln(x2+1)≥0.則下列命題是真命題的是.故選:B.9、D【解析】以,,的方向分別為x軸、y軸、z軸的正方向,建立空間直角坐標系,利用向量法即可求出答案.【詳解】解:由題意知,CA,CB,CC1兩兩垂直,以,,的方向分別為x軸、y軸、z軸的正方向,建立如圖所示的空間直角坐標系,則,,,,設平面的法向量為,則令,得.因為,所以,故直線BC與平面所成角的正弦值為.故選:D.10、D【解析】由拋物線定義可得,注意開口方向.詳解】設∵點P到y(tǒng)軸的距離是4∴∵,∴.得:.故選:D.11、D【解析】當時,不是遞增數(shù)列;當且時,是遞增數(shù)列,但是不成立,所以選D.考點:等比數(shù)列12、D【解析】等價于,令,,利用導數(shù)研究函數(shù)的單調(diào)性,作出的簡圖,數(shù)形結(jié)合只需滿足即可.【詳解】,即,又,則.令,,,當時,,時,,時,,在單調(diào)遞減,在單調(diào)遞增,且,且,,作出函數(shù)圖象如圖所示,若的整數(shù)有且僅有兩個,即只需滿足,即,解得:故選:D二、填空題:本題共4小題,每小題5分,共20分。13、1【解析】結(jié)合莖葉圖以及平均數(shù)列出方程,即可求出結(jié)果.【詳解】由題意可知,解得,故答案為:1.14、【解析】根據(jù)已知可得,設,利用勾股定理結(jié)合,求出,四邊形面積等于,即可求解.【詳解】因為為上關(guān)于坐標原點對稱的兩點,且,所以四邊形為矩形,設,則,所以,,即四邊形面積等于.故答案為:.15、【解析】利用“當時,;當時,"即可得出.【詳解】當時,當時,,不適合上式,數(shù)列的通項公式.故答案為:.16、【解析】由題意可分為步、步、步、步、步、步共6種情況,分別求出每種的基本事件數(shù),再利用古典概型的概率公式計算可得;【詳解】解:由題意可分為步、步、步、步、步、步共6種情況,①步:即步兩階,有種;②步:即步兩階與步一階,有種;③步:即步兩階與步一階,有種;④步:即步兩階與步一階,有種;⑤步:即步兩階與步一階,有種;⑥步:即步一階,有種;綜上可得一共有種情況,滿足7步登完樓梯的有種;故7步登完樓梯的概率為故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)先求導數(shù)再求最值即可求解答案;(2)由(1)確定切點,從而也確定的斜率就可以求切線.【小問1詳解】設,因為,所以,所以k的取值范圍為【小問2詳解】由(1)知,此時,即,所以此時曲線在點P處的切線方程為18、(1)證明見解析(2)【解析】(1)先求出BD,通過勾股定理的逆定理得,再由面面垂直的性質(zhì)得線面垂直,從而得線線垂直;(2)作出二面角,然后再解直角三形即可.【小問1詳解】在中,,,由余弦定理有:,∴,∴,即.又∵二面角是直二面角,平面ABD平面BCD=BD,AB?平面ABD,∴AB⊥平面BCD.又CD?平面BCD,∴AB⊥CD.【小問2詳解】因為點是的中點,在中,由(1)易知,.過點作垂直的延長線于,再連接.由(1)有AB⊥平面BCD,又平面BCD,所以,又,平面,平面,且,所以平面,又平面,所以,因此的大小即二面角的大小.而在中有,,可得,所以,所以.所以二面角的余弦值是.19、(1);(2)6.【解析】(1)本小題根據(jù)題意先求,,,再求橢圓的標準方程;(2)本小題先設過的直線的方程,再根據(jù)題意表示出四邊形的面積,最后求最值即可.【詳解】解:(1)∵橢圓上一點到左右兩個焦點、的距離之和是4,∴即,∵,∴,又∵,∴.∴橢圓的標準方程為;(2)設點、的坐標為,,因為直線過點,所以可設直線方程為,聯(lián)立方程,消去可得:,化簡整理得,其中,所以,,因為,所以四邊形是平行四邊形,設平面四邊形的面積為,則,設,則(),所以,因為,所以,,所以四邊形面積的最大值為6.【點睛】本題考查橢圓的標準方程,相交弦等問題,是偏難題.20、(1)證明見解析(2)【解析】(1)依題意可得,再由,即可得到平面,從而建立空間直角坐標系,利用空間向量法證明即可;(2)利用空間向量法求出二面角的余弦值;【小問1詳解】證明:因為平面,平面,平面,則,,又,因為,,平面,所以平面,故以點為坐標原點,建立空間直角坐標系如圖所示,則,0,,,0,,,1,,,1,,,0,,,所以,則,所以,故;【小問2詳解】解:解:因為,設平面的法向量為,則,即,令,則,,故,因為底面,所以的一個法向量為,所以,故平面與平面夾角的余弦值為21、(1);(2)證明見解析;(3).【解析】(1)由可求得實數(shù)的值;(2)利用導數(shù)分析函數(shù)的單調(diào)性,求得,即可證得結(jié)論成立;(3)分析可知在上存在唯一的極值點,且,可得出,構(gòu)造函數(shù),分析函數(shù)的單調(diào)性,求得的取值范圍,再構(gòu)造,分析函數(shù)的單調(diào)性,求出的范圍,即可得出的取值范圍.【小問1詳解】解:因為的定義域為,.由題意可得,解得.【小問2詳解】證明:當時,,該函數(shù)的定義域為,,令,其中,則,故函數(shù)在上遞減,因為,,所以,存在,使得,則,且,當時,,函數(shù)單調(diào)遞增,當時,,函數(shù)單調(diào)遞減,所以,,所以,當時,.【小問3詳解】解:函數(shù)的定義域為,.令,其中,則,所以,函數(shù)單調(diào)遞減,因為函數(shù)有兩個零點,等價于函數(shù)在上存在唯一的極值點,且為極大值點,且,即,所以,,令,其中,則,故函數(shù)在上單調(diào)遞增,又因為,由,可得,構(gòu)造函數(shù),其中,則,所以,函數(shù)在上單調(diào)遞增,故,因此,實數(shù)的取值范圍是.【點睛】方法點睛:利用導數(shù)證明不等式問題,方法如下:(1)直接構(gòu)造函數(shù)法:證明不等式(或)轉(zhuǎn)化為證明(或),進而構(gòu)造輔助函數(shù);(2)適當放縮構(gòu)造法:一是根據(jù)已知
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年1月福建廈門市集美區(qū)灌口醫(yī)院補充編外人員招聘2人備考題庫含答案詳解
- 2026北京市延慶區(qū)教育委員會招聘教師60人備考題庫完整答案詳解
- 2026云南臨滄市永德縣小勐統(tǒng)鎮(zhèn)衛(wèi)生院見習人員招聘2人備考題庫及答案詳解(考點梳理)
- 2026年生鮮食品運輸車輛交通事故應急救援預案演練方案
- 隧道施工風險控制方案
- 城市排水管網(wǎng)建設技術(shù)標準方案
- 城市污水管網(wǎng)再生項目方案
- 噪聲防治措施實施方案
- 2025至2030中國兒童早教智能硬件產(chǎn)品市場消費習慣商業(yè)模式及發(fā)展趨勢分析報告
- 2026年環(huán)境治理技術(shù)與方案設計實戰(zhàn)練習題
- 電影項目可行性分析報告(模板參考范文)
- 老年協(xié)會會員管理制度
- LLJ-4A車輪第四種檢查器
- 大索道竣工結(jié)算決算復審報告審核報告模板
- 2025年南充市中考理科綜合試卷真題(含標準答案)
- JG/T 3049-1998建筑室內(nèi)用膩予
- 人衛(wèi)基礎護理學第七版試題及答案
- 煙草物流寄遞管理制度
- 河北審圖合同協(xié)議
- 工程施工計劃與資源配置
- 廣東省湛江市雷州市2024-2025學年七年級上學期期末語文試題(原卷版+解析版)
評論
0/150
提交評論